

Development of a Proximity Based Alternative
Input Device for Motor Disabled Persons

Term paper submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science in Engineering at the University of Applied Sciences

Technikum Wien - Degree Program BBE

By: Franziska Horak
Student Number: 1010227029

Supervisor 1: Dipl.-Ing. Christoph Veigl

Vienna, 13.05.2013

Declaration
„I confirm that this paper is entirely my own work. All sources and quotations have been fully
acknowledged in the appropriate places with adequate footnotes and citations. Quotations
have been properly acknowledged and marked with appropriate punctuation. The works
consulted are listed in the bibliography. This paper has not been submitted to another
examination panel in the same or a similar form, and has not been published. I declare that
the present paper is identical to the version uploaded."

Vienna, 13.05.2013 Franziska Horak

Place, Date Signature

Kurzfassung
In dieser Arbeit soll die Entwicklung eines neuen alternativen Eingabegerätes für Personen
mit physischen Einschränkungen beschrieben werden. Die Entwicklung fand im Rahmen des
EU Projektes ‚AsTeRICS’ (Assistive Technology Rapid Integration & Construction Set) statt.
Ziel dieses Projektes ist es, durch ein Konstruktionsset für assistierende Technologien
welches aus verschiedenen Eingabehilfen und einer Softwareplattform besteht, den Zugang
zu PC oder Mobiltelefon für Personen die an einer Tetra- oder Paraplegie (der oberen
Extremität) leiden, zu vereinfachen. Für das neue Eingabegerät wurde ein Sensor welcher
über eine Infrarotdiode Licht emittiert und das von einem Objekt reflektierte Infrarotlicht
mittels Fototransistor detektiert, verwendet. Um den möglichen Einsatzbereich des Sensors
zu ermitteln, wurden zahlreiche Messungen durchgeführt, welche als Ergebnis den Bereich
der höchsten Sensibilität zwischen 5mm und 30mm lieferten. Um den Einfluss des
Infrarotanteils des Umgebungslichtes zu reduzieren wird die Infrarotdiode gepulst betrieben
und das Signal des Fototransistors über einen Schwingkreis zu einem sinusförmigen Signal
modifiziert. Da auch Personen die an einer Tetraplegie leiden die neu entwickelte
Eingabehilfe verwenden können sollen, wurde das Kinn gewählt um das Infrarotlicht zu
reflektieren. Je nach Entfernung von Kinn zu Fototransistor, fällt mehr oder weniger
Spannung über dem Fototransistor ab. Diese Spannungsänderung wird in den Analog-zu-
Digital Konverter eines ATMEL 8-bit AVR Mikrocontroller (AT90USB1286) auf einem Teensy
Development Board (Teensy++ 2.0) geführt. Nach einer Mittelwertbildung der Messwerte
können die Werte an die Softwareplattform (AsTeRICS Runtime Environment – ARE)
versendet werden. Die Kommunikation zwischen neu entstandenem Communication
Interface Module (CIM) und PC findet über eine USB-Verbindung und ein spezielles
Kommunikationsprotokoll statt. Um die neue Eingabehilfe mit der ARE und der ACS
(AsTeRICS Configuration Suite – ermöglicht einfaches Erstellen eines Modells welches die
Werte die der neue Distanzsensor liefert zu Mauszeigerbewegungen ‚umwandelt’)
verwenden zu können, musste die entsprechende Software geschrieben werden. Mit der
daraus resultierenden neuen alternativen Eingabehilfe wurde eine weitere Möglichkeit
geschaffen Personen mit starken physischen Einschränkungen den Zugang zu Bildung und
Wissen, aber auch zur Teilnahme am sozialen Leben zu erleichtern.

Schlagwörter: Assistierende Technologie, Alternatives Eingabegerät, Reflektierte
Infrarotstrahlung messender Sensor, Teensy++ Development Board, EU Projekt
AsTeRICS

2

Abstract
This work describes the development of a new alternative input device for people with
physical limitations. The development was part of the project ‘AsTeRICS’ (Assistive
Technology Rapid Integration & Construction Set) of the EU. Aim of this project is an easier
access to PCs or cell phones for people who suffer from a Tetra- or Paraplegia (of the upper
extremities). This is achieved due to a construction set that consists of several input devices
and a software platform. For the development of the new input device a reflective object
sensor that emits infrared light by an infrared diode and detects the light that is reflected by
an object with a phototransistor, was used. To determine the possible operating range of the
sensor, several measurements were carried out. Those measurements brought up the most
sensitive area at distances between 5mm and 30mm. For a minimization of the ambient
light’s fraction of infrared light, the infrared diode is pulsed. The signal that leaves the
phototransistor is lead through a parallel resonant circuit in order to achieve a sinus-shaped
signal. As also persons who suffer from a Tetraplegia should be able to use the new
alternative input device, the chin functions as the object that reflects the infrared light.
Depending on the distance between sensor and chin, either more (small distance) or less
(greater distance) voltage drops across the phototransistor. These changes of voltage drop
are sent to the digital-to-analog converter of an ATMEL 8-bit AVR microcontroller
(AT90USB1286) mounted on a Teensy Development Board (Teensy++ 2.0). After averaging
the measured values, they are forwarded to the software platform (AsTeRICS Runtime
Environment – ARE). The communication between the new built Communication Interface
Module (CIM) and the PC is carried out via an USB connection and a special communication
protocol. For the new input device being compatible with the ARE and the ACS (AsTeRICS
Configuration Suite – necessary to build a model that converts the values of the new
distance sensor to mouse pointer movements), also the corresponding software had to be
developed. With this new alternative input device a new opportunity for people, who have
physical limitations, was developed to access education and to participate in social life more
easily.

Keywords: Assistive Technology, alternative input device, reflective object sensor,
Teensy++ Development Board, EU project AsTeRICS

3

Table of Contents

	
 Introduction ... 5	
 1

1.1	
 Background .. 5	

1.1.1	
 AsTeRICS Runtime Environment (ARE) ... 6	

1.1.2	
 AsTeRICS Configuration Suite (ACS) ... 6	

	
 Materials ... 7	
 2

2.1	
 Reflective Object Sensor QRD1114 .. 7	

2.2	
 Teensy++ 2.0 Development Board .. 8	

2.3	
 Components of the AsTeRICS ACS-model that is used with the Proximity Sensor 8	

2.3.1	
 Utilized Processors ... 9	

2.3.2	
 Utilized Sensors .. 10	

2.3.3	
 Utilized Actuators .. 11	

	
 Methods .. 11	
 3

3.1	
 Testing Sensor Properties ... 11	

3.1.1	
 Permanent Shining Infrared LED of the QRD 1114 .. 11	

3.1.2	
 Pulsed Infrared LED of the QRD 1114 and Dimensioning of the Parallel Resonant
Circuit 15	

3.2	
 Programming of the Microcontroller - Firmware .. 18	

3.2.1	
 Generating the Output Signal of 9.174kHz ... 18	

3.2.2	
 Measuring Maxima and Minima – Triggering the ADC ... 19	

3.2.3	
 Calculating the Difference and the Average ... 20	

3.2.4	
 Communication Protocol and Features ... 20	

3.2.5	
 Communication of the Teensy USB Development Board (Teensy++ 2.0) 22	

3.2.6	
 Overview of the Source Files (.c-files) and their Functions 24	

3.3	
 Writing the AsTeRICS Plugin Code ... 26	

3.3.1	
 Bundle Descriptor ... 27	

3.3.2	
 Component Lifecycle .. 28	

3.4	
 Design of the Printed Circuit Board (PCB) and the Mounting 29	

	
 Results .. 32	
 4

	
 Discussion and Conclusion ... 37	
 5

Bibliography .. 39	

4

List of Pictures .. 41	

List of Tables .. 43	

A: Source files (.c-files) of proximity sensor CIM .. 44	

5

 Introduction 1
This thesis can be placed in the field of assistive technology for motor disabled persons.
More precisely the content of the paper belongs to the sub-group of alternative input devices,
which replace a computer mouse or a switch in general. Especially people who suffer from
partially or complete motor impairments of all extremities (tetraparesis/-paralysis) are reliant
on these alternative input devices in order to manage their daily routine or to use a computer.
In order to make lives of motor disabled persons more comfortable there already exists a
variety of systems for alternative human-computer interactions. The wide range of those
systems reaches from eye- or face-tracking systems, which can be used with on-screen
keyboards, to voice input and special mice or keyboards [1]. As tetraparesis/-paralysis (as
well as motor disabilities in general) can differ in appearance and severity, it is important that
the adjustment of alternative input devices can be done easily and individually to satisfy the
users’ needs as good as possible. The project AsTeRICS (Assistive Technology Rapid
Integration & Construction Set) [2] has exactly the goal to meet those before mentioned
demands. This paper is another contribution to the AsTeRICS project as it describes the
development of an alternative input device that can be used with the AsTeRICS software.
The new device is going to be built out of a sensor that emits infrared light via an infrared
diode and measures the infrared light that is reflected by an object via a phototransistor.
Depending on the distance between sensor and object the measured voltage drop across
collector and emitter changes [3]. In the context of the application and the project AsTeRICS,
the sensor is going to be called proximity sensor. The reflecting object is going to be the chin
of the user so that by moving the jaw, the amount of reflected light and therefore the amount
of the measured voltage changes. The voltage then serves as input signal for the Analog-to-
Digital converter (ADC) of an ATMEL 8-bit AVR microcontroller (AT90USB1286) that is
mounted on a Teensy USB Development Board (Teensy++ 2.0). The signal afterwards gets
processed within the microcontroller in terms of averaging the measured values to achieve
better results. Following this, the averaged values are sent to the AsTeRICS Embedded
Computing Platform. Reaching the Embedded Computing Platform it is easily possible for the
end-user to combine the sensor with a variety of already implemented actuators (e.g. on-
screen keyboards), sensors and processors. These combinations are called models that are
built in the AsTeRICS configuration suite (ACS). One model is going to be used for mouse
movements. There is going to be the design of a printed circuit board (PCB) that contains the
necessary circuits between sensor and ADC and of a fixation so that the sensor can be
mounted at the right position near the chin. For the fixation an advanced head mounting that
was already designed during the project AsTeRICS, with an appertaining box that is going to
contain the PCB, is used. At the end of this paper a new, fully working and usable sensor
shall be presented.

1.1 Background
As already mentioned in the introduction (Chapter 1), the new developed alternative
communication device (proximity sensor) is going to be part of the project AsTeRICS
(Assistive Technology Rapid Integration & Construction Set). The project’s aim is to offer a
flexible framework for Assistive Technologies that can be easily adapted to the needs of

6

users with motor disabilities. Besides the hardware components including sensor- and
actuator modules (e.g. camera, switch), Communication Interface Modules (CIMs –
interfaces to connect sensors/actuator to computing platform) and a computing platform to
run the AsTeRICS software, there exists a software framework. This software framework
consists of the AsTeRICS Runtime Environment (ARE) and the AsTeRICS Configuration
Suite (ACS). [4]

1.1.1 AsTeRICS Runtime Environment (ARE)
The ARE, as the basic software framework, is an OSGi-based middleware [www.osgi.org].
The ARE is necessary to run different plugins (programmed in JAVA, representing sensors
or actuators), which can be combined to AsTeRICS applications – the so-called ‘models’.
The plugins are implemented as independent OSGi bundles and the OSGi-based
middleware makes it possible to run the software plugins in parallel. The runtime
environment also starts and stops the operation of the plugins. The structure of a plugin
(properties, inputs, outputs and event ports) is defined in XML files, which are also the base
for the OSGi-middelware, to construct a runtime representation of an installed plugin.
Furthermore there exists another XML file that comes from the ACS and represents a
runtime model (system model). Due to the information provided by this system-model-XML-
file the ARE knows which plugins it has to activate and how the data flow between them has
to be defined. The communication between the ARE and the ACS takes place via a TCP/IP-
based communication protocol named ASAPI. Other services for plugin developers that are
provided by the ARE are for example a communication support for COM ports for the
connection of the CIMs, reporting errors that occur on the runtime environment and
interacting with the graphical user interface (ARE GUI). This graphical user interface makes it
easier for end-users to manipulate the ARE. [4], [5]
For more information see AsTeRICS User Manual [4] p. 14 and AsTeRICS Developer
Manual [5] p. 8-9

1.1.2 AsTeRICS Configuration Suite (ACS)
The ACS is used to create new models for the ARE. Also these models can be manipulated,
started, stopped and uploaded/downloaded to/from the ARE in the ACS. The ACS can – but
does not need to – run on the same computer as the ARE. For the usage of the ACS there
are some terms that are important to know [4]:

- Plugins (pieces of software) are needed to communicate with a device and to perform
certain calculations. [4]

- Components can be divided into three types:
o sensors: are the source of data flow in an AsTeRICS model. The newly

developed component that is described in this work belongs to the group of
sensors.

o processors: are used to manipulate the data from a sensor or another
processor in a way to deliver new output data for other processors or
actuators

7

o actuators: execute the desired action and are driven directly or indirectly by
data from sensors

All the listed components have ports to connect to other components, so that a data
exchange between them can occur. There exist four types of ports: input, output, event
listener and event trigger ports. [4]

Picture 1 Example of an ACS-model consisting of a sensor (FacetrackerLK: tracks the position of the
nose or the chin via a web cam), a processor (Averager: stores a defined number of values that arrive
at the input port, averages them and sends the value via the output port) and an actuator (Mouse: the
mouse pointer movements in horizontal direction are now carried out via the horizontal movements of

the user’s nose)

 Materials 2
2.1 Reflective Object Sensor QRD1114
A reflective object sensor consists of an infrared light emitting diode (LED) and for sensing
the reflected light a npn-phototransistor that converts light into electric current. Both, LED
and phototransistor are placed side by side on the top of the sensor. The light that is
measured with the phototransistor has to be reflected by an object in the near of the sensor.
The more infrared light is reflected by an object, more voltage drops between base and
emitter and therefore more current flows from collector to emitter. Also the voltage drop
across the phototransistor (voltage drop across collector and emitter) changes with the
intensity of the reflected infrared light (Picture 7, Picture 8 and Picture 9). The reflective object
sensor QRD1114 reaches its maximum of current flow with a reflecting object at a distance
of 25mils (0.635mm) [3] and a maximum of voltage drop within 0mm to 5mm using a 220Ω
series resistor before the infrared LED (Picture 9).

Picture 2 Reflective object sensor QRD 1114, dimensions: 6.1 x 4.39 x 4.65mm, weight: 2g

8

2.2 Teensy++ 2.0 Development Board
The Teensy++ 2.0 Development Board is a microcontroller development system that is
completely based on USB. To connect the Board to a PC, only a standard Mini-B USB cable
is necessary. It is either available with only solder pads for all I/O signals or with header pins
that are already soldered onto it. [6] Its key features are an AVR processor with 16MHz clock
frequency, the possibility of single push button programming combined with the very easy-to-
use Teensy Loader application, the free software development tools and the fact that due to
the USB connection it can be any type of device. [7] Specifications can be found on the table
below (Table 1).

Specification Teensy++ 2.0 Development Board
Processor AT90USB1286 (8bit AVR, 16MHz)
Flash Memory 130048
RAM Memory 8192
EEPROM 4096
I/O (Number) 46, 5 Volt
Analog In 8
PWM 9
UART, I2C, SPI 1, 1, 1
Price 24$

Table 1 Key features and specifications of the Teensy++ 2.0 Development Board [7]

Picture 3 Teensy++ 2.0 Development Board with header pins [7]

2.3 Components of the AsTeRICS ACS-model that is used
with the Proximity Sensor

In order to make the new proximity sensor usable as a mouse, it was necessary to develop a
new model within the ACS. This model consists of several components that help to adjust the
characteristics and the behavior of the proximity sensor. In this section only the components
itself and their functions are shortly described. For the working principle of the whole model
see Chapter 4. As source of information in this chapter the help-function of the ACS was
used. Also look there for more detailed information about the different used components.

9

2.3.1 Utilized Processors
- Averager

This component consists of one input- and one output port. As its name already
suggests, it averages values that enter the component via the input port. Therefor the
user has the possibility to select the buffer size, thus the number of values over which the
average should be built. In case of the proximity sensor four values first get filled in the
buffer and then are averaged. This helps to flatten the curve even more.

- SampleAndHold
The SampleAndHold-component provides four input- and output ports and one event
listener port. After capturing an event that was either sent by the AutostartEvent- or the
ButtonGrid-component (button ‘Init’), it saves the current value that arrives via the input
port. The stored value should equal the neutral point of the chin and therefore the neutral
position of the mouse (no movement).

- MathEvaluator
This component consists of four input ports and one output port. Values that arrive via the
input ports can be used for every mathematical expression the user wants to express and
the result of the mathematical expression is delivered to the output port. In case of the
proximity sensor, two input ports are used. The value that is saved in the
SampleAndHold-component is subtracted from the current value that is sent from the
Averager. This subtraction makes it possible that the movement of the chin can be
interpreted as negative (equates to mouse movement to the left) and positive (equates to
mouse movement to the right) values around the neutral point.

- StringDispatcher
The StringDispatcher-component provides one input-, one output- and one event listener
port. After receiving an event from the ButtonGrid-component and after an individually
defined delay, it sends the appropriate information through the output port. In the model
that was designed for the proximity sensor, the StringDispatcher-component delivers
information about the next click (double click, right click, drag click) to the mouse-
component.

- PathSelector
The PathSelector has one input-, one event listener- and four output-ports. The
component provides the opportunity to link the input port (numerical signal) with one of
the four output ports. The output port that should be linked with the input port can either
be chosen directly by a dedicated event listener port or by using the event listener port
the link connection is switched to the next or the previous output port. This enables the
user to fulfill two-dimensional mouse cursor movements. After staying within the dead
zone of the curve for a defined time period of 600ms (component Timer.1), the next
output port is linked with the input port. Depending on the linked output port, the mouse
component knows if the upcoming chin movement should be interpreted as movement
into the horizontal or vertical direction.

- Deadzone
The Deadzone-component can also be called ‘resting zone’. With this component one is
able to define active and passive zones where the mouse pointer should move or not. It
has three input- and two output ports and one event trigger- and event listener port each.

10

To move the mouse pointer, it is necessary to exceed a defined value of a sensor. Using
the component with two-dimensional values, as it is the case with the proximity sensor,
the Deadzone-component can be described as a number line. After defining the zero
point on the scale, the ‘radius’ (0.5) of the (in this case) passive zone around the zero
point can be specified. For the usage of the proximity sensor only the event trigger port is
used as output port. From this port events are sent every time the current value enters or
leaves the defined ‘radius’.

- AdjustmentCurve
This component consists of two input ports and one output port. It shows the user the
curve that is produced by the usage of any alternative input device (sensor) that provides
two-dimensional values. Due to some sensor properties or anatomical conditions of the
user it could be the case that the values in one direction away from the neutral point (zero
point of resting zone scale) are different (e.g. in terms of acceleration) to those in the
opposite direction. With the AdjustmentCurve-component it is possible to compensate
such differences and to further adjust the values that represent the mouse pointer
movement. Furthermore the output values of this AdjustmentCurve-component are used
as input signal of the Deadzone-, the PathSelector- and the Oscilloscope-component to
display the current values.

2.3.2 Utilized Sensors
- AutostartEvent

This component provides only one event trigger port and sends an event after the whole
model is started. The moment for sending the event can be chosen individually due to
defining a delay. For the usage of the proximity sensor a delay of 1000 seconds was
chosen.

- ButtonGrid
The ButtonGrid works like an on-screen keyboard with the special feature that the keys
can be defined individually. It provides only one port – an event trigger port. Via this port
events are sent after buttons are pressed. The keys that are used in case of the proximity
sensor are: ‘Init’, ‘Enable/disable’, ‘DOUBLECLICK’, ‘RIGHTCLICK’, ‘DRAGCLICK’ and
‘saveCurve’ (Picture 25). The button ‘Init’ is pressed after positioning the sensor correctly
at the chin. The value that is now sent from the proximity sensor (thus the current position
and the corresponding light reflection) is initialized as neutral point. Clicking the button
‘Enable/disable’ enables or disables the mouse function of the proximity sensor. If the
function is disabled, the normal mouse can be used. Enabling the proximity sensor
mouse function means that the normal mouse cannot be used. The buttons that are
written in capital letters provide the choice between the different clicking possibilities for
the next left click. ‘saveCurve’ is used to save the curve that was formed in the
component AdjustmentCurve.

- Timer
This component has one input-, one output-, one event trigger and one event listener
port. It can measure time in milliseconds. This measured time can either be reported on
the output port or after defining a time period, events can be triggered when the time
period has passed. Used with the proximity sensor only the event listener port (waits for

11

events that are sent from the Deadzone-component) and the event trigger port (sends
events to PathSelector- and WavefilePlayer-component) are used. Both Timer-
components start to count after the user enters the defined dead zone. They stop
counting after exiting the dead zone again or after the defined time period has passed
and an event has been triggered.

- Slider
With the Slider-component it is possible to generate a slider of any size with an
adjustable range of values on the ARE desktop. Connecting its only output port to the
input port of a component that is designed for the slider’s values, it can be used to
change parameters of the model during runtime. With regard to the proximity sensor the
slider is used to adjust the value of the threshold that is necessary to send events if the
corresponding sending mode was selected (see Table 4).

2.3.3 Utilized Actuators
- Mouse

This component facilitates the movement of the mouse cursor and the clicking process
on the computer the ARE is running on. The three different input ports and the event
listener port (cursor movement x-direction, cursor movement y-direction, press/release
action) provide the mouse functions.

- WavefilePlayer
The WavefilePlayer has one input port and one event listener port. After receiving an
event, a before specified .wav-file is played on the platforms sound output. In case of the
proximity sensor, a sound is played every time the user stays within the dead zone for the
defined time period that causes an event.

- Oscilloscope
This component can display one or two signal values. The trace color and update speed
of the signal that enters the component via its input port can be configured via the
component’s parameters.

- EventVisualizer
With the EventVisualizer-component events can be graphically displayed due to a simple
text output that shows the names of the events. It is mainly used for testing the
configurations during setup time. With regard to the proximity sensor it displays events
that are produced after the corresponding sending mode (Table 4) has been selected.

 Methods 3
3.1 Testing Sensor Properties
3.1.1 Permanent Shining Infrared LED of the QRD 1114
First of all it was necessary to measure the ratio of distance between object and sensor and
the resulting output voltage. This ratio helped to detect the most sensitive area in front of the
sensor and therefore gives indication of the right adjustment in the near of the head (more
precisely in the near of the chin). In order to see if surrounding sunlight/daylight influences
the output voltage, the measurement was once taken with closed sun-blinds and once taken

12

with opened sun-blinds. Also the forward current IF through the infrared diode was changed
for the purpose of varying the intensity of the emitted light. To change the value of IF, different
series resistors were used. According to the test conditions of the sensor’s datasheet [3] the
first tested IF_1 was 15mA. Increasing IF to IF_2=27.5mA and IF_3=36mA increased the intensity
of emitted infrared light. Knowing the maximum forward voltage VF of the diode (VF=1.7V) [3]
and the operating voltage VOP of the whole system (VOP=5V), the values for the different
series resistors could be calculated using Formula 1 first:

𝑉!" − 𝑉! = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑛 𝑠𝑒𝑟𝑖𝑒𝑠 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑉!
Formula 1

Applied on the above-listed values VR = 5V – 1.7V = 3.3V.
Secondly the value of the series resistor can be calculated by using a converted type of the
Ohm’s law:

𝑈 = 𝑅 ∙ 𝐼
Formula 2

Converted law:

𝑅 =
𝑈
𝐼

Formula 3

Now the above-calculated voltage of 3.3V that has to be applied on the resistor in order not
to exceed maximum VF of the diode and the desired IF can be inserted into Formula 3. Table
2 shows the calculation for the three different series resistors that are needed to generate the
three values of IF.

Resistor
Voltage on

series resistor
VR [V]

Wanted
forward current

IF_wanted [mA]

Calculated
value of series

resistor [Ω]

Available and
used resistor

values [Ω]

Real forward
current IF

[mA]

R1

3.3
20 165 220 15

R2 30 110 120 27.5
R3 40 82.5 91 36

Table 2: Calculation of three different series resistors to gain three different values of IF (20mA, 30mA,
40mA)

For the measurement itself the sensor and the corresponding series resistor were fixed on a
pinboard (circuit drawing see Picture 4). This pinboard was mounted on one end of a guide
rail and a white paper on a slide was moved away from it (Picture 5 and Picture 6). Every
millimeter the slide was stopped and the current voltage value was measured with an
oscilloscope (Tektronix, Four channel digital storage oscilloscope, TDS 2024). The whole
circuit was supplied with 5V from a power supply (Manson, Switching mode power supply,
NRP-3630).

13

Picture 4 Circuit diagram to measure the distance-voltage dependency (Permanent shining LED)

Picture 5 Measurement setup to measure the
dependency of object-to-sensor-distance and

voltage drop across the phototransistor –
permanent shining infrared LED (pinboard, sensor,

white paper on slide)

Picture 6 Measurement setup to measure the
dependency of object-to-sensor-distance and

voltage drop across the phototransistor –
permanent shining infrared LED (pinboard, sensor,
white paper on slide, guide rail, pointer to stop at

every mm)

Drawing the diagrams of dependency of the object-to-sensor-distance to the voltage drop
across the phototransistor it has to be noticed that the part of the circuit containing the
resistor RM and the phototransistor, works like a voltage divider. This means that with little or
no reflected infrared light (reflecting object far away) the phototransistor acts like an almost
infinite big resistor as there exists no voltage potential between base and emitter and a
current flow from collector to emitter is not possible. Therefore all the supply voltage (VCC)
drops across the resistor RM. By reducing the distance between object and sensor, the
resistance of the phototransistor decreases as the voltage potential between base and
emitter increases so that a current flow from collector to emitter is enabled. Now the supply
voltage (VCC) drops across both parts (RM and the phototransistor) of the voltage divider.
Hence the measured voltage across RM decreases. To be able to draw the dependency
between the object-to-sensor-distance and the voltage drop across the phototransistor it is
needed to subtract the voltage values that were measured across RM from VCC.

14

Picture 7 Voltage drop across phototransistor depending on object-to-sensor-distance, under artificial

light conditions, three different series resistors (R1=220Ω, R2=120Ω, R3=91Ω)

Picture 8 Voltage drop across phototransistor depending on object-to-sensor-distance, under artificial

light & daylight conditions(cloudy sky, no direct sunlight), three different series resistors (R1=220Ω,
R2=120Ω, R3=91Ω)

15

Picture 9 Voltage drop across phototransistor, artificial light compared to artificial light & daylight

(cloudy sky, no direct sunlight), series resistor R1=220Ω

Comparing the graphs of the three different series resistors (R1, R2, and R3) in Picture 7, it is
apparent that the most sensitive area of R1 can be found within 5mm to 25mm. Increasing
the intensity of the emitted infrared light by using smaller series resistors (R2 and R3) of the
infrared diode the most sensitive area is shifted to distances within 7mm to 30mm. Looking at
Picture 8 (opened sun-blinds) the comparison of the graphs of the three different series
resistors (R1, R2, and R3) achieves nearly the same result as in Picture 7 (closed sun-blinds).
While the most sensitive areas at short distances do not show a significant variation, a
noticeable difference can be found at distances above 30mm. There, the influence of the
amount of infrared light in daylight gets displayed. Even at big distances over 30mm the
phototransistor detects infrared light. This effect is even better observable in Picture 9 where
the measurements of R1 with and without daylight (cloudy sky, no direct sunlight) are
compared directly. Due to the amount of infrared light in daylight a higher voltage drop over
the phototransistor occurs (Picture 9: blue graph at higher voltages than red graph). As for the
planned application an operating range above 30mm is not needed and a bigger series
resistor lengthens the lifespan of the infrared LED, all further measurements and circuit
designs are done using the 220Ω series resistor R1.

3.1.2 Pulsed Infrared LED of the QRD 1114 and Dimensioning of the
Parallel Resonant Circuit

To get rid of the influences caused by the amount of infrared light in the daylight, the infrared
LED got pulsed with a square-wave signal (frequency: 10kHz, Picture 11: orange graph) that
is produced by the microcontroller. This pulsing of the diode works, together with the parallel
resonant circuit, to blind out the fraction of infrared light that is present in ambient light. This
is possible as the resonant circuit can only be induced by the very special frequency of the
pulsed diode. Therefore not only the fraction of infrared light that is present in the ambient
light, but also all other frequencies of surrounding light are blinded out. Furthermore the
resonant circuit transforms the by the phototransistor detected square-wave signal into a

16

nearly perfect sinus-shaped signal (Picture 11: green graph). For the dimensioning of the
parallel resonant circuit the resonance frequency fR correlates to the frequency of the pulsed
infrared LED. Therefore for further calculations one has to assume fR=10kHz. Starting with
the dimensioning of the resonant circuit, either the value of the inductor LR or the capacitor
CR can be chosen first. In this case LR was defined first: LR=10mH.

𝑓! ≈
1

2𝜋 𝐿 ∙ 𝐶

Formula 4

𝐶 ≈
1

𝐿 ∙ 𝑓! ∙ 2𝜋 !

Formula 5

By using Formula 4 [8] and transforming it to Formula 5, it is possible to calculate the right
value for C. By applying the values of fR=10kHz and LR=10mH to Formula 5, the equation
delivers the capacity CR=25nF. An available capacitor that fits best to this value has the
capacity CR=22nF. Additionally to the parallel resonant circuit the operating point has to be
raised to 2.5V so that the signal oscillates around 2.5V. This raising of the operating point
has to be done with regard to the later use of the signal as input to the analog-to-digital-
converter of the microcontroller were the reference voltage VRef reaches from a minimum of
0V to a maximum of 5V and therefore negative values can not be converted. Further the
maxima and minima of the sinus-shaped signal are measured (Picture 11: red lines) and
subtracted, so that there can be developed another diagram of the dependency of the object-
to-sensor-distance to the voltage drop across the phototransistor.

Picture 10 Circuit diagram to measure the distance-voltage dependency (pulsed LED) including the

parallel resonant circuit (to transform received square-wave signal into a sinus-shaped signal) and to
raise the operating point to 2.5V (inserted 33kΩ resistors). VIn delivers the frequency of 10kHz to pulse

the diode. Capacitor C (10nF) is used to filter the signal before it enters the microcontroller via VOut.
VCC=5V.

17

Picture 11 Square-wave signal of the pulsed infrared diode with a frequency of 10kHz and the
corresponding sinus-shaped signal that is produced by the parallel resonant circuit that follows the

phototransistor with the points of measurement

Before the measurements, which were needed to generate the diagram of the dependency of
the object-to-sensor-distance to the voltage drop across the phototransistor, could be carried
out another adjustment had to be done. As the used electronic components of the parallel
resonant circuit have tolerances of ±10%, the signal frequency fR is not exactly 10kHz. By
empirically adjusting the frequency, the resonance frequency of the real parallel resonant
circuit fR_real equals 9.174kHz. The measurements were carried out with a similar
measurement setup as it was used with the permanent shining infrared LED (Chapter 3.1.1).
Picture 12 shows the measurement setup: The sensor, which was connected to the whole
circuit on the pinboard, was fixed on the stationary part of a sliding caliper whereas the paper
was fixed on the movable part. The paper was moved away from the sensor, stopped every
millimeter and the current voltage values (maximum, minimum, delta between maximum and
minimum) were measured with an oscilloscope. This measurement setup leads to the
diagrams of the dependency of the object-to-sensor-distance to the voltage drop across the
phototransistor shown in Picture 13.

Picture 12 Measurement setup to measure the dependency of object-to-sensor-distance and voltage
drop across the phototransistor – pulsed infrared LED (connections to pinboard, sensor fixed on the

steady part of the sliding caliper, white paper fixed on the movable part of the sliding caliper)

18

Picture 13 Voltage drop across phototransistor depending on object-to-sensor-distance, pulsed

infrared LED, green graph: Delta = Maximum - Minimum

As it can be seen from the blue and the red graph in Picture 13, the sinus-shaped signal
oscillates not exactly around 2.5V. Indication for this fact is, that the values of the maxima
never come as close to the 2.5V as the values of the minima do. Therefore the sinus-shaped
signal oscillates around a voltage value that is bigger than 2.5V. However, looking at the
green graph (delta) it is easy to see that the area of the highest sensitivity can be found
again between 5mm and 30mm.

3.2 Programming of the Microcontroller - Firmware
3.2.1 Generating the Output Signal of 9.174kHz
For the generation of the output signal (pulsing the infrared LED), the Timer/Counter1 was
used because of its feature of being a 16-bit Timer/Counter and providing three independent
output compare units (one of them is used for signal generation and one is used for ADC-
triggering, see Chapter 3.2.2, Measuring Maxima and Minima – Triggering the ADC) [9]. This
assures that for both signals (9.174kHz-signal to pulse infrared LED and the signal that is
used as trigger source for the ADC) Counter1 starts at the same moment to count.
To make further calculations easier, a prescaler of eight is used (Register TCCR1B à Bit
CS11=1) [9]. Dividing the system clock frequency of 16MHz by eight, gives a new frequency
of 2MHz. The periodic time of this frequency is 0.5µs, which equals now one timer-tick of
Timer/Counter1. With this knowledge it is possible to calculate the compare value, starting
with the required frequency of 9.174kHz that has a periodic time of 109µs. As the output pin
should be toggled twice within those 109µs, it is necessary to divide the periodic time by two.
The half of the periodic time therefore is 54.5µs. Dividing the half of the periodic time by the
time of one timer-tick (0.5µs) leads to 109 timer-ticks, which equal the reload value. The
compare value now can be written to the output compare register OCR1A [9]. If now the
value of Timer/Counter1 (in register TCNT1) equals the compare value in OCR1A, a

19

compare-match-A-interrupt is triggered and the output compare pin OC1A is toggled
automatically (special function of pin PB5, adjusted in register TCCR1A (Bit COM1A=1) [9])
every 54.5µs. Because of the toggling the infrared LED of the sensor is either turned on or
turned off. The interrupt service routine (ISR(TIMER1_COMPA_vect)) that gets called every
time a compare-match-A-interrupt occurs, contains only one line, where the compare value is
increased by 109. Otherwise Counter1 would first count to 216 and again to 109 to trigger an
new interrupt so that a signal with another frequency than 9.174kHz would be generated.

3.2.2 Measuring Maxima and Minima – Triggering the ADC
The configuration of the analog-to-digital converter (ADC) contains the following parts: First
the ADC-prescaler that is defined with 64 (register ADCSRA [12], Bits ADPS0/1/2). Dividing
the system clock frequency of 16MHz by 64 leads to an ADC clock frequency of 250kHz and
a periodic time of 4µs. Secondly the source of the reference voltage is chosen as AREF-pin
with the internal Vref turned off (register ADMUX [12], Bits REFS0/1). Thirdly pin ADC3 that
is used as analog input pin is defined by writing the Bits MUX0 and MUX1 in the ADMUX-
register [9] to 1. Also the ADC auto trigger mode has to be enabled by setting the ADATE-Bit
of the register ADCSRA. In this mode the ADC will always start a conversion on a positive
edge of a selected trigger signal. The trigger signal itself is defined in the ADCSRB-register
[9]. Writing the bits ADTS0 and ADTS2 to one, selects Timer/Counter1 compare-match-B as
trigger source. In the ADC auto trigger mode a whole conversion takes 13.5 cycles (2 cycles
of the 13.5 cycles at the beginning of the conversion are needed for sample & hold) [9, Table
25-1]. Those 13.5 cycles multiplied by the periodic time of the ADC clock (4µs) give a
conversion time of 54µs. As the time from one maximum to one minimum of the sinus-
shaped signal is only 0.5µs longer than the conversion time it would be theoretically possible
to measure every of the maxima/minima. However, for the future application, it is not
necessary to have about 18 000 values per second available. Hence the compare value of
Timer/Counter1 (compare-match-B) that is written to the output compare register OCR1B
has to be calculated. Instead of sampling the sinus-shaped signal with a frequency of
9.174kHz every 54.5µs (sampling rate 18.34kHz), a sampling rate of about 500 samples per
second (fsample=500Hz, Tsample=2ms) would be sufficient as well. Dividing Tsample by the 54.5µs
the obtained number of 36.69 delivers the information that every 36.69th maximum/minimum
would have to be sampled to achieve a sample rate of 500Hz. To sample alternately one
maximum and one minimum it has to be an odd number of maxima/minima that are skipped.
Setting the number to 39 and multiplying it with 54.5µs we get a new periodic time of the
sample rate Tsample_new=2.1255ms (fsample_new=470.47Hz). Dividing Tsample_new by the time of one
timer-tick (0.5µs) the compare value that has to be written to OCR1B [9] is 4251. The
interrupt service routine (ISR(TIMER1_COMPB_vect)) that gets called every time a
compare-match-B-interrupt occurs, contains only one line, where the compare value is
increased by 4251. Otherwise Counter1 would first count to 216 and again to 4251 to trigger
an interrupt so that a signal with another frequency than fsample_new would be generated.

20

3.2.3 Calculating the Difference and the Average
Within the interrupt service routine (ISR) of the ADC alternately the value of a maximum is
saved to variable ‘top’ and the voltage difference between maximum and minimum is directly
saved to variable ‘diff’ by subtracting the latest minimum-value from the before saved
maximum-value ‘top’. For building the sum out of the constantly new calculated differences
(variable ‘diff’) a buffer with the size of eight is used where the latest eight values of ‘diff’ are
saved. Due to this buffer, a currently updated value for ‘sum’ can be provided. Therefore the
oldest value of ‘diff’ is cleared out of variable ‘sum’ by subtracting it. Then the latest value of
‘diff’ is added to variable ‘sum’. Every time the buffer is filled again with new ‘diff’-values,
variable ‘sum’ is divided by the size of the buffer (buffer size: eight) in order to calculate an
average.

3.2.4 Communication Protocol and Features
During the development of the project AsTeRICS a communication protocol was
implemented. This protocol is needed for the communication between the AsTeRICS
Runtime Environment (ARE) and external modules (Communication Interface Modules
(CIMs)) via the USB standard interface (communication via USB CDC virtual serial ports).
Therefore this communication protocol is also called CIM-protocol. The CIM-protocol is a bi-
directional communication standard that is needed for the usage of available services for
connection and communication that are provided by the ARE as well as it is needed to define
the unique ID for the CIM type. Furthermore the protocol is necessary to read or write so-
called ‘features’ from/to the CIM. [5]
The following table (Table 3) shows the format of a CIM-protocol packet.

Data field
Size
(bytes)

Range of values Description

Packet ID 2 “@T” (0x4054) Identifier of the beginning of a new packet

ARE ID (CIM
ID)

2

Packet from
- AREàCIM: ARE ID (identification of ARE

version)
- CIMàARE: CIM ID (identification of CIM

type)

Data size 2 0x0000-0x0800

Commands/ answers from CIM can contain
optional data (e.g. ADC values). Data size
says how many data is attached to the
command/answer.

Serial packet
number

1
0x00-0x7f (0x80-
0xff for event-
replies from CIM)

Helps to identify what reply of the CIM belongs
to which request from the ARE.

CIM-Feature
address

2 Definition of addressed CIM-feature

Request
Code
(Reply Code)

2
LSB represents a command code that is
globally valid for all CIM-types
MSB:

21

- ARE à CIM: specification of transmission
mode

- CIM à ARE: error/status code related to
transmission

Optional data 0-2048
Additional data of a packet. Actual length
given “Data size” field.

Optional CRC
checksum

0 or 4
CRC32
checksum

-

Table 3 CIM protocol structure – packet format (Italic descriptions refer to communication from CIM to
ARE) [5, see also for more detailed descriptions of packet data fields]

Generally speaking, the programming of the CIM-protocol can be categorized into two
different parts:
1.) The first part to be shortly described here is the analysis of a new arriving packet that

was sent from the ARE to the CIM. After recognizing the two synchronization bytes “@”
and “T” one after the other, the parsing of the packet goes on. Now variables are filled up
with the right byte according to Table 3. Reaching the end of the packet, the second part
of the CIM-protocol is carried out.

2.) In this second part, depending on the command that was sent with the packet from the
ARE, the addressed feature is carried out, including the sending of an answer-packet that
is sent from the CIM to the ARE. The answer-packet is generated also according to the
packet format of Table 3. The following table (Table 4) provides an overview and short
descriptions of the features that are realized in the new developed CIM called proximity
sensor.

Table 4 List and description of the CIM-features that are provided by the new developed CIM called
proximity sensor

CIM-feature name
Expecte
d Size
(Bytes)

CIM-
feature
address

Description

Teensy_CIM_Feature
_UniqueNumber

0 0x00
Read feature (reading unique number from
CIM)

Teensy_CIM_Feature
_Set_Threshold

2 0x02
Write feature (writing threshold to CIM – needed
for event generation)

Teensy_CIM_Feature
_Mode_Selection

2 0x06

Write feature (writing mode of operation to CIM)
Choice by sending following values to CIM:
- 0 à CIM will send continuous values

(average of eight ‘diff’-values; see
‘Calculating the Difference and the
Average’)

- 1 à CIM will send an event (1), if the
second of two immediately consecutive
values exceeds the before set threshold

- 2 à CIM will send an event (0), if the
second of two immediately consecutive
values succeeds the before set threshold

- 3 à Combination of point 1 & 2

22

Calculating the transmission frequency from the CIM to the ARE (during the mode of
operation where the average of eight ‘diff’-values is continuously sent (see Table 4)) it has to
be considered that one time Tsample_new (2.1255ms) is needed to get the value of one
maximum (saved in variable ‘top’). To sample the ‘corresponding’ minimum and calculating
immediately the difference out of those two values (maximum – minimum), Tsample_new goes by
a second time. So to get one value that can be saved in variable ‘diff’, 4.251ms elapse. As
always the average of eight ‘diff’-values is sent, or in other words: the sending process
always starts when the buffer (size of buffer: 8) is full, the 4.251ms have to be multiplied by
eight. If the buffer is full, the average is calculated and sent. Between two sent average-
values Tsending = (Tsample_new � 8) = 34ms go by. This Tsending equates to a sending frequency
fsending = 1/ Tsending of 29.4Hz.

3.2.5 Communication of the Teensy USB Development Board
(Teensy++ 2.0)

The Teensy USB Development Board ‘Teensy++ 2.0’ uses the ATMEL 8-bit AVR
microcontroller AT90USB1286 with a system clock frequency of 16MHz. For the
communication with the PC (host) a USB connection is used. This makes the usage of the
Teensy Development Board very easy and comfortable. The board provides a programmable
USB connection enabling the developer to implement several USB device classes on the
board. These classes can be recognized on the PC with a respective driver. After plugging in
a new device to the host, several descriptors, which are data structures with a defined
format, define the device class and give information about the specific features to the host.
The first two fields of all descriptors contain the total number of bytes in the descriptor and
the identification of the descriptor type. Some fields of a descriptor contain references to
string descriptors. These are descriptors, which contain information that can be displayed
and are readable for humans (e.g. in the device descriptor exist references to string
descriptors describing the manufacturer, the product itself and the serial number of the
product. [10]

Descriptors
Device descriptor
This descriptor contains general information about the USB device and the device’s entire
configuration. Every USB device has only one device descriptor. With the device descriptor it
is possible to configure:

- the length of the descriptor itself,
- the type of the descriptor (constant that belongs to the configuration descriptor: 01h),
- the functionality of the device and the driver that has to be nominally loaded

(configured by three bytes: DeviceClass, DeviceSubClass and DeviceProtocol),
- the maximum packet size and
- information about the manufacturer and the product itself

(For more detailed configuration options see [11] p. 261-263, Table 9-8)
With this information and a look at the USB class codes that are defined by the USB
Implementers Forum, Inc. [12], it is easy to see from the usb_serial.c-file that comes with the

23

Teensy Development Board that the Teensy Board conforms to the Communication Device
Class (CDC) specifications (DeviceClass = 2, DeviceSubClass = 0, DeviceProtocol = 0).

Configuration Descriptor
The configuration descriptor contains information about a specific device configuration and
the number of interfaces that are provided by this configuration. Requesting the configuration
descriptor, all related interface- and endpoint-descriptors are returned to the host. Different to
the device descriptor, an USB device can have one or more configuration descriptors.
Each of the configurations that are defined by the configuration descriptor has one or more
interfaces (and the corresponding descriptors) and each interface has optional endpoints
(and their according descriptors). The configuration descriptor contains information about:

- the length of the descriptor itself,
- the type of the descriptor (constant that belongs to the configuration descriptor: 02h),
- the number of interfaces that are supported by this configuration,
- a description of the configuration (string descriptor)
- and the maximum power consumption of the USB device in a specific configuration

(power comes from the bus, USB device is fully operational)
(For more detailed configuration options see [11] p. 264-266, Table 9-10)
Comparing the above-mentioned information with the usb_serial.c-file of the Teensy
Development Board, one can see that it supports two interfaces, a maximum power
consumption of 100mA, but no string descriptor that describes the configuration.

Interface Descriptor
The interface descriptor describes the interface that is used within a specific configuration
and is therefore always returned as part of the configuration descriptor. This descriptor
provides information about:

- the length of the descriptor itself
- the type of the descriptor,
- a number to identify the interface
- the total number of supported endpoints (endpoint 0 is not included in the number of

endpoints)
- the functionality of the device, similar to the device class (configured by three bytes:

InteraceClass, InterfaceSubClass and InterfaceProtocol),
(For more detailed configuration options see [11] p. 267-269, Table 9-12)
In case of the proximity sensor, there exist two interface descriptors and three endpoint
descriptors. One interface descriptor defines the device as communication device
(communication device class – CDC) and the other descriptor tells the host that the device
can also operate as data interface (belonging to the CDC). [10]

All the other descriptors that are found in the usb_serial.c-file (namely: CDC Header
Functional Descriptor, Call Management Functional Descriptor, Abstract Control
Management Functional Descriptor and Union Functional Descriptor) are not explained at
this point. For information about those descriptors see [13] Chapter 5.2.3.

24

Enumeration Process
This chapter provides just a short overview about the process of how the host detects and
connects a new attached USB device.
After plugging the device into one of the host’s USB ports, it is recognized due to a voltage
change within the USB port. Now the device is powered. While the port of the new device is
reset, the host gets the information in which mode (full- or high-speed-mode) the device is
going to communicate. After resetting the device, it remains in the state of default until the
host sends a request to get further information of the descriptors. Now the host allots an
explicit new address to the device. The entire communication between host and device is
processed via this address. [10]
As all USB devices have to have a serial number, a vendor ID and a product ID the host is
able to create a new COM port (on Windows) for every unique combination of those three
parameters. For the creation of a new COM port on Windows the so-called .inf-file is
necessary. Normally a device of the communication device class (CDC) is able to create a
COM port on its own, but Windows set the .inf-file as a standard. One device always gets the
same COM port number as the host remembers each serial number. Data that should be
sent is filled into an USB endpoint buffer first. The data of the endpoint buffer is transmitted
to the host when it becomes full or if there is a timeout with no more writes. [14]

3.2.6 Overview of the Source Files (.c-files) and their Functions
The firmware of the microcontroller consists of five source files. Those five source files are:
ProximityCIM.c, Timer.c, Adc.c, CimProtocol.c and usb_serial.c. In this chapter the function
of each file is going to be shortly described. A state-machine diagram (Picture 14) shall help
to understand the program flow.

Timer.c
With this source file the pulsing of the infrared diode and the sampling rate of the sinus-
shaped signal are implemented. The file contains a function that configures both of the
timers. On configuration relates to the compare match values that are written to the output
compare registers OCR1A and OCR1B. The counter counts from zero to this defined value.
Reaching the compare match value, the corresponding interrupt service routine is carried
out. In case of reaching the value that was written to OCR1A (109, pulsing the diode see
Chapter 3.2.1), the output compare pin (OC1A equals pin PB5 on the printed circuit board)
gets toggled automatically. This toggling is defined due to the register TCCR1A. To make the
start- and stop-command via the ARE/ACS possible, the compare match interrupts that
correspond to the value written in OCR1B (sampling frequency, see Chapter 3.2.2) can be
turned on/off via the functions start_timer1/stop_timer1.
Furthermore the Timer.c-file contains the service routines (ISRs) that correspond to the
output compare matches. Each of the both ISRs contains only one line that increases the
compare match values of OCR1A and OCR1B every time by the initialization value in order
to generate the needed/wanted frequencies. Otherwise there would only be a compare
match interrupt when the counter reaches the initialization value.

25

Adc.c
This source file contains a function that initializes and configures the ADC and clears the
buffer that is used to store the eight most recent ‘diff’-values. The configuration includes:
enabling the ADC auto trigger mode (conversion always starts at positive edge of the chosen
trigger signal) and the ADC interrupts. It further contains the configuration of the ADC clock
(register ADCSRA), the source of the reference voltage (ADMUX) and the signal that should
be used for triggering (Timer/Counter1 Compare Match B). Within the ISR that is carried out
after a conversion is completed, alternately the measured values for a maximum and for a
minimum are saved. Further the difference of the latest two values is calculated. The
calculated differences are saved into the buffer and added. (For a more detailed description
of this computing process see Chapter 3.2.3.) If the buffer is full (eight values are saved), the
variable ‘ADC_updates’ is set to one. As a result of the setting-to-one, within the
ProximityCIM.c file the last function of the Adc.c-file is carried out. This function divides the
sum of eight diff-values by the size of the buffer (eight) and therefore the average is
calculated.

usb_serial.c
The usb_serial.c-file can be downloaded from the Teensy homepage [14]. It contains the
data that is necessary for the enumeration process (descriptor data, see Chapter 3.2.5) and
so-called ‘public functions’ that simplify the usage of the Teensy Development Board. For the
implementation of the proximity sensor only five of them are used. The first one is called
‘usb_init’ and is activated in the main-function of the ProximityCIM.c-file. As the name
already implies, it initializes the USB serial. The second function named ‘usb_configured’
returns zero if the USB is not configured or the configuration number that was selected by
the host. In the ProximityCIM.c-file it is used within a while-loop. As long as zero is returned,
the program stays there. The third function is called ‘usb_serial_available’ and returns the
number of bytes that are available in the receive buffer. It is used in the cimprotocol.c-file to
identify if there are bytes sent from the ARE that can be parsed. If there are bytes in the
receive buffer, the fourth function is used. The so-called ‘usb_serial_getchar’-function is used
to get the next character out of the available bytes in the receive buffer. The last used
function is called ‘usb_serial_write’ and is used to send a packet from the CIM to the ARE.

CimProtocol.c
For a more detailed description of the CimProtocol see Chapter 3.2.4. This source file can be
divided into two main parts. The first part is implemented in the function
‘parse_CIM_protocol’ and is used for the analysis of a new arriving packet that was sent from
the ARE to the CIM. After recognizing the two synchronization bytes “@” and “T” one after
the other, the parsing of the packet goes on. Now variables are filled up with the right byte
according to Table 3. Reaching the end of the packet, the second part of the CIM-protocol is
carried out.
The second part, implemented in the function ‘process_ARE_frame’, is used to carry out the
addressed feature that was defined by the command that was sent with the packet from the
ARE. This includes the sending of an answer-packet that is sent from the CIM to the ARE.

26

The answer-packet is generated also according to the packet format of Table 3. Table 4
provides an overview and short descriptions of the features that are realized in the new
developed CIM called proximity sensor. However, there are also features to start, stop or
resume the CIM. Starting the CIM means that the timers and the ADC get initialized and the
timer that is used for the sampling process is started. With the feature stop_CIM, only the
timer that is used for the sampling process is stopped.

ProximityCIM.c
This source file is the one that contains the main-function. It calls up the before mentioned
functions that are needed to initialize the ADC and the timers. Further it calls up the functions
that are needed to generate the answer packet (implemented in CimProtocol.c) according to
the selected sending mode after the buffer of the Adc.c-file that contains the diff-values is
filled and the average was calculated. If one of the sending modes was chosen, the
comparison of the current value with the threshold is also carried out in the ProximityCIM.c-
file.

Picture 14 Schematic drawing of the program flow. State ‘Init’ contains the blinking LED and the

customization of the ADC trigger source. If the new arrived packet does not contain the identifier “@T”,
the packet is faulty and the waiting for a new packet starts again. After recognizing a commando out of
a right packet, the commando gets processed and an answer packet is replied. If the commando that
is read out of the packet is ‘Start’, the trigger source of the ADC is started and therefore the sampling
and all further steps are started too. Sending the command ‘Stop’ means that the trigger source of the

ADC is turned off so that no sampling takes place anymore.

3.3 Writing the AsTeRICS Plugin Code
Using the AsTeRICS Plugin Creation Tools creates the base frame of a new plugin (here:
proximity). The Plugin Creation Tools provide the necessary folder structure, the bundle
descriptor and a template for the JAVA source code. Main part of the Plugin Creation Tools
is the Plugin Creation Wizard, which creates the folders and files that are needed for the
Eclipse build flow. Those files also include already a JAVA source code skeleton and the
bundle descriptor of the plugin. Within the Plugin Creation Wizard, the type (input, output,
event listener, event trigger), the number and the appropriate data-type of desired ports and

27

the properties of the new plugin can be created easily. Properties can include for example a
threshold that can be set by the user in the ACS. [5]
For creating a new plugin, several ARE coding guidelines have to be considered. These
guidelines are listed in [5], Chapter 4.1] and therefore the explanation in this paper is going to
be rather short. Basically the names of plugins, ports and properties should be intuitively and
suitable for the purpose they are going to serve. Variables in the plugin code should not be
named differently to the names they were given in the bundle descriptor.
For naming conventions of ports and properties and plugin activation in the ACS and the
ARE see [5, Chapters 4.1 and 3.2].

3.3.1 Bundle Descriptor
The bundle descriptor can be seen as an abstraction layer between the developer and the
user, who creates models out of different plugins in the ACS. Further it describes the content
of an individual bundle by providing information about the included components (in this case,
the proximity sensor is the only component), their ports and properties. [5]
The proximity sensor’s bundle descriptor consists of:
- General information about the component

- Type, name, description and data-type of the input- and output port

The output port “distance” delivers, if sending mode 0 (see Table 4, Picture 14) has been
chosen, permanently the average of always eight ‘diff’-values (see Chapter 3.2.3).
The input port “input” is used to set the threshold to produce events. For that sending
mode 1, 2 or 3 (see Table 4, Picture 14) has to be chosen.

28

- Type, name and description of the event trigger ports

The event triggerer ports “LowToHigh” and “HighToLow” are used when a threshold is set
and the current value exceeds or succeeds the threshold.

- Name, data-type, default value and description of the properties

3.3.2 Component Lifecycle
Within the component lifecycle the actual component (proximity sensor) is implemented. The
lifecycle can generally divided into two sections [5]:
- the lifecycle support methods and
- the component support methods

The lifecycle support methods are used to handle events that are related to the component
lifecycle. There exist four different states a component can be in [5]:
• Ready

If a component is in the state ‘Ready’, it is stateless. By starting the component becomes
‘Active’.

• Active
The state ‘Active’ is stateful. From this state the component can either become ‘Paused’
or ‘Stopped’.

• Paused
If the component is ‘Paused’ (stateful) it can either be activated again or completely
stopped.

• Stopped
Stopping the component means that it becomes stateless again.

The component support methods are used to access the input- and output ports of the
component and to set or get it’s supported properties [5]. The plugin code of the proximity
sensor contains the following component support methods:

29

- public IRuntimeOutputPort getOutputPort (String portID)

This method is needed by the ARE to get the connection to the output port. Referencing
to the port with the corresponding ID carries out the process of connecting to the port.

- public IRuntimeInputPort getInputPort(String portID)
This is a necessary method to connect the ARE with the input port. For further description
see method ‚IRuntime OutputPort getOutputPort’.

- public IRuntimeEventTriggererPort getEventTriggererPort(String eventPortID)
To get the connection between ARE and the event trigger port, this method is needed.
For further description see method ‚IRuntime OutputPort getOutputPort’.

- public Object getRuntimePropertyValue(String propertyName)
This function is necessary for the manipulation of internal component properties that have
an influence on the process implemented in the component.

- public Object setRuntimePropertyValue(String propertyName, Object newValue)
The values of the component properties (threshold, sending mode) that are chosen via
the ACS and imported to the ARE, are sent to the proximity sensor. Before sending the
values, they have to be included into a CIM packet that was build regarding to the CIM
protocol.

- public void handlePacketReceived(CIMEvent e)
This method is needed for the CIM communication as is parses the packets that are sent
from the CIM to the ARE.

- public void handlePacketError(CIMEvent e)
If a packet that was sent from the CIM to the ARE is incorrect or an answer is missing at
all, this method is used to handle the problem.

3.4 Design of the Printed Circuit Board (PCB) and the
Mounting

Designing the PCB, the free version of the CadSoft EAGLE PCB Design Software was used.
The size of the circuit board was given by a mounting that can be placed on the head that
already exists. This mounting includes a box where a circuit board is placed and protected
against damage. On the PCB the circuit that is shown in Picture 10 was placed twice so that
there exists the possibility to connect a second proximity sensor to the board to realize a
control with directly selectable x- and y-coordinates. Further it was important to be able to fix
the Teensy Development Board easily on the PCB. Therefore two rows of sockets were
placed, so that the Teensy Board can be plugged in without any effort. Also a 3.5mm stereo
jack connector (that is used as mono jack connector) was added and connected to a digital-
in pin of the Teensy Board in order to connect it with, for example, a simple switch button. To
facilitate an easy adjustment of the sensor at the chin, a pliable mounting wire was used. For
the fixation of this wire a plane that is connected to ground is provided. Connecting the
mounting wire with ground has the advantage that the thin ground wire has not to be in the
shrinking hose. The connection between PCB and sensor(s) was planned with a 4-way
header. However, as the mounting wire is fixed permanently on the PCB and a shrinking

30

hose holds the mounting wire and the signal wires of the sensor together permanently, a plug
makes no sense any more. Therefore the signal wires of the sensor are soldered directly
onto the PCB.

Quantity Value
Names of the parts
on PCB-Layout

Description

2 -
LEISTE_GND,
LEISTE_VCC

PIN HEADER/ Socket, 1 Row, 20
Contacts, 2.54mm

2 10nF C1, C2 Capacitor, SMT-Package 0805
1 10uF C5 Capacitor, SMT-Package 0805
1 1kΩ R7 Resistor, SMT-Package 0805
2 220Ω R3, R4 Resistor, SMT-Package 0805

2 22nF C3, C4
Capacitor, SMT-Package 1206
Replaced by normal sized components

4 33kΩ R1, R2, R5, R6 Resistor, SMT-Package 0805

2 -
4WAY_HEADER_1,
4WAY_HEADER_2

TE Connectivity /AMP, Header, 90°, 4
Contacts

2 -
STEREO_3,5MM_1,
STEREO_3,5MM_2

Lumberg, 1503-03, Socket, 3.5mm Jack

2 10mH L1, L2 Multicomp, Fixed Inductor, Tolerance 5%
Table 5 Parts of the printed circuit board

As up to now only one sensor is used, this sensor is connected to the holes of the
4WAY_HEADER_1 (Picture 15, Picture 18).

Picture 15 PCB Layout for the proximity sensor

31

Picture 16 Unpopulated PCB, Top Layer

Picture 17 Populated PCB, Top Layer

One end of the mounting wire is soldered onto the plane that can be seen on the picture
above. Approximately at the middle of 4WAY_HEADER_2 it is bent to 90° and leaves the
PCB (Picture 18). At the other end of the mounting wire the reflective object sensor
(QRD1114) is placed (Picture 18). For the protection of the contacts that are going into the
sensor about three to four centimeters of wires before they enter the sensor are stuck
together with hot glue (Picture 18). Afterwards all the wires (mounting wire, signal wires)
were coated with a shrinking hose (Picture 19).

Picture 18 PCB with connected mounting wires and signal wires, with hot glue stabilized sensor

contacts, no shrinking hose

Picture 19 PCB with connected mounting wires and signal wires, shrinking hose over mounting and

signal wires

32

 Results 4
Picture 20 and Picture 21 show the PCB in the box that protects it against damage. The box
was only adapted from an already existing SolidWorks-model. The adaption includes two
holes for plugging in the wires (USB plug and Jack Plug 3.5mm) and one hole for the
mounting wire.

Picture 20 Box for fixing the PCB on the dedicated head mounting and protecting it against damage

(Box open), holes for USB plug, Jack Plug 3.5mm and for the mounting wire

Picture 21 Box for fixing the PCB on the dedicated head mounting and protecting it against damage

(Box closed)

Picture 22 Box containing the PCB fixed on the

dedicated head mounting

Picture 23 Sensor mounted on the head

33

On Picture 22 one can see the box that is fixed on the dedicated head mount. After donning
the dedicated head mount, the sensor can be placed in the neutral position of the chin by
bending the mounting wire. Picture 23 shows the sensor mounted on the head and Picture
26 shows the optimal distance between sensor and chin at the neutral/resting position. By
moving the chin to the left (closer to the sensor) or to the right (away from the sensor) the
amount of reflected infrared light increases/decreases and therefore the according values
that are sent from the CIM change.
Picture 24 shows the screen shot of the ACS-model that makes the mouse pointer
movement possible. At this point the working principle of all the components together should
be described. For more details about the components and their functions see Chapter 2.3.
The Slider-component is only used if the corresponding sending mode (sending events, see
Table 4) was chosen. As for the mouse pointer movement only the sending mode that sends
continuous values (see Table 4) is used, the Slider- as well as the EventVisualizer-
component are not needed for the explanation of the working principle. Starting at the
Proximity-component (representing the proximity sensor), the continuously sent values
(representing the distance between object and sensor) are sent to the MathEvaluator-
component. There, the value that was either saved after the AutostartEvent-component
sends an event or after the ‘Init’-button of the button grid is pressed, gets subtracted from the
current values. This makes a calibration of the neutral point of the chin possible. To make the
sensor as intuitively as possible, the result of the subtraction has to be multiplied by -1 in
order to produce a mouse pointer movement to the left when the chin is moved to the left.
After the calibration, the AdjustmentCurve-component enables the user to adjust the curve
that is formed by his/her chin movement. This can be necessary to compensate the fact that
the movement of the chin away from the sensor causes less acceleration as the movement
closer to the sensor. Furthermore the dead zone/resting zone can be made broader or
narrower. Now the signal that leaves the AdjustmentCurve-component is ready to be used as
mouse pointer movement- or action- (clicking) signal. After choosing the action (right click,
left click, drag click) for the next mouse click that should be performed over the buttons on
the ButtonGrid-component, the StringDispatcher-component sends the according command
to the input ‘action’ of the Mouse-component. After entering the defined dead-zone-radius an
event is sent from the Deadzone-component and both Timer-components (Timer.1 and
Timer.1.1) start to count the time (in milliseconds) that passes by. Timer.1 is used to change
the direction of the mouse pointer movement from horizontal to vertical and the other way
around. For changing the direction once, it is necessary to stay within the dead zone for
600ms. After the direction has been successfully changed (signalized due to an acoustic
signal generated by the WavFilePlayer-component), the user has to exit the dead zone again
to move the mouse pointer in the desired direction. Staying within the dead zone longer than
600ms, Timer.1.1 is called into action. Timer.1.1 triggers an event after 1500ms. This event
has two consequences: On the one hand, the direction of the mouse pointer movement is set
to horizontal movement (x-direction). This is necessary as waiting 1500ms within the dead
zone means that after 600ms the direction of the mouse pointer movement is changed
automatically due to Timer.1. On the other hand, the triggered event causes a mouse action.
This could either be the kind of click that was chosen via the ButtonGrid-component, or a

34

normal double-left-click. If no special click-function was chosen on the ButtonGrid, every click
that is generated after waiting 1500ms is a normal double-left-click. Clicking successfully also
generates an acoustic signal. For enabling/disabling of the proximity sensor as mouse
control, another button on the ButtonGrid is provided. This can for example be used to allow
a technician to modify the ACS-model with a standard mouse.

Picture 24 AsTeRICS ACS-model for mouse control

The picture below (Picture 25) shows the graphical user interface of the mouse control
model.

Picture 25 Graphical user interface oft he ASC-model for mouse control

Besides the model for controlling the mouse there already exist two other ready-to-use-
models within the ACS. One of them is a simple test-model that provides an oscilloscope to
display the values that are sent from the sensor, an event visualizer to display incoming
events, a bar display to visualize the current signal value that is sent from the CIM and it also
provides a Slider-component to define the threshold. The other model is a model to play
pinball. This model equals the mouse control model with the exception that the

35

AdjustmentCurve-component is followed by two Comparator-components. Those
Comperators have a defined threshold. One of them triggers an event if the threshold (20) is
exceeded and the other one triggers an event if the threshold (-20) is succeeded. Exceeding
the threshold leads to local keyboard input of ‘L’ on the computer the ARE is running on. Now
the right bouncer can be moved. Succeeding the threshold, a keyboard input of ‘A’ is
generated to move the left bouncer.

Picture 26 shows the sensor mounted on the head (chin in neutral position). The next picture
(Picture 27) shows the chin movement closer to the sensor and therefore the mouse pointer
movement to the left. Picture 28 shows the movement to the right.

Picture 26 Sensor mounted on the head, chin in neutral position

Picture 27 Sensor mounted on the head, chin moved to the left (closer to the sensor)

Picture 28 Sensor mounted on the head, chin moved to the right (away from the sensor)

The table below (Table 6) shows the performance data of the proximity sensor with the
mouse control model. It was used with an on-screen keyboard and the characters that could
be typed per minute at the first usage and after a little training (10th time usage) are shown.
Also a comparison to the usage of on-screen keyboard, scanning methods and a single push
button is included.

36

Way of using the on-screen keyboard Characters per minute
First time usage of the proximity sensor with the
mouse control model and an on-screen keyboard

26

10th time usage of the proximity sensor with the
mouse control model and an on-screen keyboard

51

On-screen keyboard with scanning method and
single push button

50

Table 6 Performance data of the proximity sensor used with an on-screen keyboard (1st- and 10th-time
usage) compared to the performance data of a single push button with an on-screen keyboard and a

scanning method

To test the performance of the mouse control even more, it was the task to open the
AsTeRICS homepage (via Google and on-screen keyboard) and to further open the
Quickstart Guide on page six (scrolled via the drag&drop function) that can be found in the
menu ‘Downloads’ and ‘Manuals’. One time it was opened with a one-switch-mouse and the
other time with the proximity sensor. For this use case the mouse model was changed a little
bit (no oscilloscope, no slider to set the threshold and no event visualizer). Also the graphical
user interface was moved to the right side of the screen. A screen shot of the graphical user
interface, the browser window and the on-screen keyboard used with the proximity sensor
can be seen on Picture 29. The results of this test can be found on the table below (Table 7).

Picture 29 Screen shot of the use case: ‚Searching and downloading a file from a homepage’. On the

right side of the screen the graphical user interface is illustrated. At the bottom one can see the OSKA
on-screen keyboard and at the top the browser window was placed.

One-switch-mouse Proximity sensor
7min 3min 40sec

Table 7 Time that is needed to search and download a file on the Internet. One time the proximity
sensor was used, the other time a one-switch-mouse.

37

 Discussion and Conclusion 5
With the new built alternative input device, called proximity sensor, another possibility to use
a PC for people with physical limitations was developed. Using a reflective object sensor
(consisting of an infrared diode and a phototransistor) to measure the distance between the
user’s chin and the sensor, provides easier computer access also for people who suffer from
a Tetraplegia and therefore are only able to move their head. Furthermore, after the
calibration process that includes the correct placement of the sensor on the mounting wire at
the chin, no strength is needed to operate the sensor. It is also important to mention that also
small and very exact mouse pointer movements are possible as the chin can be moved very
precisely and the corresponding curve of the chin movement can be adjusted individually.
Due to the pulsing of the infrared diode a minimization of the influence that is caused by the
ambient light’s amount of infrared light was achieved. However, the ambient light’s influence
is not completely blinded out. This could be caused by the reason, that due to the amount of
infrared light that is present in the ambient light, the amplitude of the square-wave signal and
the therefore the amplitude of the sinus-shaped signal get higher. To counteract this
circumstance, the ACS-models for mouse control and pinball include the AdjustmentCurve-
component. This component makes it possible to define the zero point/neutral position of the
chin every time the proximity sensor is started or after a change of the lighting conditions.
With the mouse model, the user is able to control the mouse pointer movement in horizontal
as well as vertical directions. Furthermore one can decide what kind of click should be
carried out next. There are three possibilities: double click (left), right click and drag click.
After the chosen click was carried out, the next click will be a double click as it is set as
standard click.
Before the proximity sensor could be used on the designed PCB, the printed circuit board
was tested. This brought up some problems that were related to the SMT (surface-mount
technology) 22nF capacitors (Table 5 and Picture 15, C3 and C4) of the parallel resonant
circuit. Although the chosen SMT capacitors were film capacitors and have the same
properties (according to their datasheet) like the normal sized through-hole capacitors, they
do not show the same behavior at the frequency of 9.174kHz. This could either be caused by
the capacitors tolerances or by a production fault. To solve the problem, the SMT capacitors
were replaced by the through-hole capacitors that were used on the pinboard. After this
exchange, the proximity sensor could be used as it was planned.
As shown in the results, after a little training with the proximity sensor, the mouse pointer
movements can be carried out rather fast. This is also good for applications that include an
on-screen keyboard (e.g. Oska). The on-screen keyboard can be used directly instead of
using it with scanning methods [1]. Although there is not a big difference in the number of
characters that can be written when using the scanning methods (combined with a push
button) and when using the proximity sensor, the latter has the huge advantage that not only
the keyboard can be used, but all normal mouse functions can be carried out as well.
Comparing the mouse functions of the proximity sensor with those provided by a one-switch-
mouse, one can see that the time that is needed to open a homepage and to download a file
can be reduced by about 50%.

38

Another improvement can be brought about due to the possibility of connecting a second
sensor to the PCB. This can be done easily as the circuit that is needed for one sensor was
placed a second time on the PCB. By adding a second sensor and implementing some
changes in the CIM’s firmware and the ARE-software, it is possible to generate horizontal
and vertical mouse pointer movements separately. For that reason one sensor stays beside
the chin (the position that is also used now) and the other one is fixed beneath the chin. Due
to this further development it is no longer necessary to move the mouse pointer first to the
desired horizontal/vertical position, changing the direction of the mouse pointer movement to
vertical/horizontal and then move the mouse pointer to the desired vertical/horizontal
position. With the usage of two sensors the mouse pointer can be moved directly, without
spending time on the change of direction, to the desired position.

39

Bibliography
[1] AsTeRICS Deliverable D2.4 – Report on the state of the art,

(http://www.asterics.eu/index.php?id=2, Downloads à Deliverables, Date of last visit:
24.4.2013), p. 14 – 37, 54
Contact details:
Kompetenznetzwerk,
KI-I Projekt AsTeRICS
Altenbergerstraße 69
4040 Linz, Austria
Tel: +43 732 2468 3770

[2] AsTeRICS Homepage (http://www.asterics.eu/index.php?id=2, Date of last visit:

24.4.2013)
Contact details see [1]

[3] Datasheet of Reflective Object Sensor QRD1114, p. 2

[4] AsTeRICS User Manual, Verison 2.0 (http://www.asterics.eu/index.php?id=2, Downloads

à Manuals, Date of last visit: 24.4.2013), p. 5f, 14, 15
Contact details see [1]

[5] AsTeRICS Developer Manual, Version 2.0 (http://www.asterics.eu/index.php?id=2,
Downloads à Manuals, Date of last visit: 24.4.2013), p. 8f, 50-53, 17f, 25f, 29,
Contact details see [1]

[6] http://www.pjrc.com/store/teensypp.html, Date of last visit: 29.4.2013
Contact details:
PJRC.COM, LLC
14723 SW Brooke CT
Sherwood, OR 97140
USA
Tel: 503 625-9328
email:
paul@pjrc.com (technical questions)
robin@pjrc.com (financial/administrative questions)

[7] http://www.pjrc.com/teensy/, Date of last visit: 29.4.2013

Contact details see [6]

[8] U. Tietze, Ch. Schenk, Halbleiter-Schaltungstechnik, 12. Auflage, Springer, Erlangen und
München 2002, p. 1544

40

[9] Datasheet of ATMEL 8-bit AVR microcontroller AT90USB1286, p.117, 142-145, 138-140,

326-331, 318

[10] J. Axelson, USB 2.0 – Handbuch für Entwickler, 3. Auflage, REDLINE GmbH,
Heidelberg 2007, p. 99-102, 120

[11] Universal Serial Bus Specification, Revision 2.0, April 2000,

(http://www.usb.org/developers/docs/, Date of last visit: 24.4.2013), p. 260-274,

[12] http://www.usb.org/developers/defined_class, Date of last visit: 24.4.2013

Contact details:
Martha Keizur
USB Implementers Forum, Inc.
Kavi Corporation
225 SE Main Street, Second Floor
Portland OR 97214
privacy@usb.org

[13] Universal Serial Bus Class Definitions for Communications Devices, Revision 1.2,

November 2010 (http://www.usb.org/developers/devclass_docs, Communication Device
Class, Date of last visit: 24.4.2013), p. 15ff
Contact details see [8]

[14] Comments of the file: usb_serial.c (http://www.pjrc.com/teensy/usb_serial.html à
USB Serial, Version 1.7, Date of last visit: 24.4.2013)

41

List of Pictures
Picture 1 Example of an ACS-model consisting of a sensor (FacetrackerLK: tracks the
position of the nose or the chin via a web cam), a processor (Averager: stores a defined
number of values that arrive at the input port, averages them and sends the value via the
output port) and an actuator (Mouse: the mouse pointer movements in horizontal direction
are now carried out via the horizontal movements of the user’s nose) 7	

Picture 2 Reflective object sensor QRD 1114, dimensions: 6.1 x 4.39 x 4.65mm, weight: 2g . 7	

Picture 3 Teensy++ 2.0 Development Board with header pins [7] ... 8	

Picture 4 Circuit diagram to measure the distance-voltage dependency (Permanent shining
LED) ... 13	

Picture 5 Measurement setup to measure the dependency of object-to-sensor-distance and
voltage drop across the phototransistor – permanent shining infrared LED (pinboard, sensor,
white paper on slide) .. 13	

Picture 6 Measurement setup to measure the dependency of object-to-sensor-distance and
voltage drop across the phototransistor – permanent shining infrared LED (pinboard, sensor,
white paper on slide, guide rail, pointer to stop at every mm) .. 13	

Picture 7 Voltage drop across phototransistor depending on object-to-sensor-distance, under
artificial light conditions, three different series resistors (R1=220Ω, R2=120Ω, R3=91Ω) 14	

Picture 8 Voltage drop across phototransistor depending on object-to-sensor-distance, under
artificial light & daylight conditions(cloudy sky, no direct sunlight), three different series
resistors (R1=220Ω, R2=120Ω, R3=91Ω) .. 14	

Picture 9 Voltage drop across phototransistor, artificial light compared to artificial light &
daylight (cloudy sky, no direct sunlight), series resistor R1=220Ω ... 15	

Picture 10 Circuit diagram to measure the distance-voltage dependency (pulsed LED)
including the parallel resonant circuit (to transform received square-wave signal into a sinus-
shaped signal) and to raise the operating point to 2.5V (inserted 33kΩ resistors). VIn delivers
the frequency of 10kHz to pulse the diode. Capacitor C (10nF) is used to filter the signal
before it enters the microcontroller via VOut. VCC=5V. ... 16	

Picture 11 Square-wave signal of the pulsed infrared diode with a frequency of 10kHz and
the corresponding sinus-shaped signal that is produced by the parallel resonant circuit that
follows the phototransistor with the points of measurement .. 17	

Picture 12 Measurement setup to measure the dependency of object-to-sensor-distance and
voltage drop across the phototransistor – pulsed infrared LED (connections to pinboard,
sensor fixed on the steady part of the sliding caliper, white paper fixed on the movable part of
the sliding caliper) .. 17	

Picture 13 Voltage drop across phototransistor depending on object-to-sensor-distance,
pulsed infrared LED, green graph: Delta = Maximum - Minimum .. 18	

Picture 14 Schematic drawing of the program flow. State ‘Init’ contains the blinking LED and
the customization of the ADC trigger source. If the new arrived packet does not contain the
identifier “@T”, the packet is faulty and the waiting for a new packet starts again. After
recognizing a commando out of a right packet, the commando gets processed and an
answer packet is replied. If the commando that is read out of the packet is ‘Start’, the trigger
source of the ADC is started and therefore the sampling and all further steps are started too.

42

Sending the command ‘Stop’ means that the trigger source of the ADC is turned off so that
no sampling takes place anymore. ... 26	

Picture 15 PCB Layout for the proximity sensor .. 30	

Picture 16 Unpopulated PCB, Top Layer ... 31	

Picture 17 Populated PCB, Top Layer ... 31	

Picture 18 PCB with connected mounting wires and signal wires, with hot glue stabilized
sensor contacts, no shrinking hose .. 31	

Picture 19 PCB with connected mounting wires and signal wires, shrinking hose over
mounting and signal wires .. 31	

Picture 20 Box for fixing the PCB on the dedicated head mounting and protecting it against
damage (Box open), holes for USB plug, Jack Plug 3.5mm and for the mounting wire 32	

Picture 21 Box for fixing the PCB on the dedicated head mounting and protecting it against
damage (Box closed) ... 32	

Picture 22 Box containing the PCB fixed on the dedicated head mounting 32	

Picture 23 Sensor mounted on the head .. 32	

Picture 24 AsTeRICS ACS-model for mouse control ... 34	

Picture 25 Graphical user interface oft he ASC-model for mouse control 34	

Picture 26 Sensor mounted on the head, chin in neutral position .. 35	

Picture 27 Sensor mounted on the head, chin moved to the left (closer to the sensor) 35	

Picture 28 Sensor mounted on the head, chin moved to the right (away from the sensor) ... 35	

Picture 29 Screen shot of the use case: ‚Searching and downloading a file from a
homepage’. On the right side of the screen the graphical user interface is illustrated. At the
bottom one can see the OSKA on-screen keyboard and at the top the browser window was
placed. .. 36	

43

List of Tables
Table 1 Key features and specifications of the Teensy++ 2.0 Development Board [7] 8	

Table 2: Calculation of three different series resistors to gain three different values of IF

(20mA, 30mA, 40mA) ... 12	

Table 3 CIM protocol structure – packet format (Italic descriptions refer to communication
from CIM to ARE) [5, see also for more detailed descriptions of packet data fields] 21	

Table 4 List and description of the CIM-features that are provided by the new developed CIM
called proximity sensor ... 21	

Table 5 Parts of the printed circuit board ... 30	

Table 6 Performance data of the proximity sensor used with an on-screen keyboard (1st- and
10th-time usage) compared to the performance data of a single push button with an on-
screen keyboard and a scanning method .. 36	

Table 7 Time that is needed to search and download a file on the Internet. One time the
proximity sensor was used, the other time a one-switch-mouse. ... 36	

44

A: Source files (.c-files) of proximity sensor CIM
ProximityCIM.c
/*

AsTeRICS Proximity CIM Firmware
using Teensy 2.0++ Controller board
file: ProximityCIM.c
Version: 0.1
Authors: Chris Veigl (FHTW), Franziska Horak
Date: 30/04/2013

*/

#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdint.h>
#include <util/delay.h>
#include <inttypes.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <util/delay.h>
#include "Adc.h"
#include "Timer.h"
#include "CimProtocol.h"
#include "usb_serial.h"

#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))

#define AUTOUPDATE_VALUES 0
#define THRESHOLD_BELOW_ABOVE 1
#define THRESHOLD_ABOVE_BELOW 2
#define THRESHOLD_BOTH 3

extern struct CIM_frame_t CIM_frame;
uint16_t oldVal;

void setupHardware(void)
{
 Timer_Init();
 ADC_Init();

 DDRD |= (1<<5); PORTD &= ~(1<<5);
 DDRD |= (1<<6); PORTD &= ~(1<<6);

 DDRB |= (1<<5); PORTB &= ~(1<<5); // PB5 bzw. OC1A --> Output, init: low
 DDRB &= ~(1<<0); PORTB |= (1<<0); // PB0: input with pullup
 // start_timer1();
}

int main(void)
{
 uint16_t value;
 CPU_PRESCALE (0);

 // initialize the USB, and then wait for the host
 // to set configuration. If the Teensy is powered
 // without a PC connected to the USB port, this
 // will wait forever.
 usb_init();
 while (!usb_configured()) /* wait */ ;
 _delay_ms(1000);

 setupHardware();
 init_CIM_frame();

 sei();

45

 while (1)

{
 parse_CIM_protocol(); // look if new command arrived from ARE and process it

 if (ADC_updates) // is a new buffer of ADC-values available ?
 // (updated via the ADC ISR)
 {
 value = mittl_berechnen(); // calculate averaged value
 ADC_updates=0;

 switch (selection) {

 case AUTOUPDATE_VALUES:
 generate_ADCFrame(value);
 break;

 case THRESHOLD_BELOW_ABOVE:
 if ((oldVal < threshold) && (value >= threshold))
 generate_EventFrame(1);
 break;

 case THRESHOLD_ABOVE_BELOW:
 if ((oldVal > threshold) && (value <= threshold))
 generate_EventFrame(0);
 break;

 case THRESHOLD_BOTH:
 if ((oldVal < threshold) && (value >= threshold))
 generate_EventFrame(1);
 else if ((oldVal > threshold) && (value <= threshold))
 generate_EventFrame(0);
 break;
 }
 oldVal = value;
 }
 }
}

Timer.c
/*

AsTeRICS Proximity CIM Firmware
using Teensy 2.0++ Controller board
file: Timer.c
Version: 0.1
Authors: Chris Veigl (FHTW), Franziska Horak
Date: 30/04/2013

*/

#include <avr/io.h>
#include <avr/interrupt.h>

void Timer_Init(void) {

TIMSK1=0;
TIFR1=(1<<2)|(1<<1);
TCNT1=0;
OCR1A = 109; // Wert bei dem der Compare Match Interrupt (LED) ausgelöst wird (vorher Reload-Value 149 --> 256-149=107)
OCR1B = 109+40; //Wert bei dem der Compare Match Interrupt (ADC) das erste Mal ausgelöst wird
TCCR1A |= (1<<6); //OC1A toggeln bei Compare Match, keine PWM (alle WGMn-Bits sind 0)
TIMSK1 |= ((1<<1) | (1<<2)); //Output Compare A und B interrupt enabled

}

void start_timer1()
{
 TCCR1B |= (1<<1); //Prescaler 8 --> 1 Timer-Tick 0,5us;
}

46

void stop_timer1()
{
 TCCR1B = 0;
}

ISR(TIMER1_COMPA_vect)
{
 OCR1A = OCR1A + 109;
}

ISR(TIMER1_COMPB_vect)
{
 //PORTD = PORTD ^ (1<<5);
 OCR1B = OCR1B + 4251;
}

Adc.c
/*

AsTeRICS Proximity CIM Firmware
using Teensy 2.0++ Controller board
file: Adc.c
Version: 0.1
Author: Chris Veigl (FHTW), Franziska HOrak
Date: 30/04/2013

*/

#include <avr/io.h>
#include <avr/interrupt.h>

#define BUFSIZE 8

volatile uint16_t ADC_updates=0; // counts ADC updates in ISR
static volatile int16_t buffer[BUFSIZE];

static int16_t sum=0;
static uint8_t buffer_pos=0, measure_top=1;

void ADC_Init(void) {

ADC_updates=0;

ADCSRA = (1<<ADIF);
ADCSRB = 0;
ADMUX=0;

sum=0; buffer_pos=0; measure_top=1;

 for (int i=0;i<BUFSIZE;i++) buffer[i]=0;

 ADCSRA |= ((1<<5) | (1<<3)); //ADC Auto Trigger enable, ADC Interrupt enable
 ADCSRA |= ((1<<2) | (1<<1)); //ADC Prescaler 64 --> 250kHz

ADCSRB |= ((1<<2) | (1<<0) | (1<<7)); //Trigger-Source: Timer/Counter1 Compare Match B, High Speed Mode
ADMUX = ((1<<6) | (1<<0) | (1<<1)); //VCC with external capacitor on AREF pin, Single Ended Input ADC3

 DIDR0 |= (1<<3); //Digital Input Disabled
 ADCSRA|= (1<<7); //ADC enable --> in Auto-Trigger-Mode //the first conversion is started
on a positive edge of the trigger signal
}

/*periodische ADC-Messungen --> über Compare Match ISR OCR1B getriggert*/
ISR(ADC_vect)
{
 static int16_t berg;
 unsigned char low, high;
 low=ADCL;
 high=ADCH;
 uint16_t diff = 0;

47

 if (measure_top)
 {
 berg = (((uint16_t)high<<8)+low); //1ste Messung --> Bergwert messen
 measure_top=0;
 }
 else
 {

diff = berg - (((uint16_t)high<<8)+low); //2.Messung:Differenz bilden -->
diff= berg - Talwert

 sum = sum - buffer[buffer_pos];
 buffer[buffer_pos] = diff;
 sum += diff;

if (!(buffer_pos= (buffer_pos+1) % BUFSIZE)) // buffer filled with values !
 ADC_updates++;

 measure_top=1;
 }
}

uint16_t mittl_berechnen()
{

if (sum < 0) { measure_top=!measure_top; return (0);} // this is a workaround for the init-comparematch problem !
 return (uint16_t)(sum/BUFSIZE);
}

cimprotocol.c
/*

AsTeRICS Proximity CIM Firmware
using Teensy 2.0++ Controller board
file: CimProtocol.c
Version: 0.1
Author: Chris Veigl (FHTW), Franziska Horak
Date: 30/04/2013

AsTeRICS CIM Protocol Packet Frame:
===================================
Packet ID 2 bytes "@T" (0x4054)
ARE ID / CIM ID 2 bytes
Data Size 2 bytes 0x0000-0x0800
Packet serial number 1 byte 0x00-0x7f (0x80-0xff for event-replies from CIM)
CIM-Feature address 2 bytes
Request / Reply code 2 bytes
---> 11 bytes = minimum frame length
Optional data 0-2048 bytes
Optional CRC checksum 0 or 4 bytes CRC32
---> 2063 bytes = maximum frame length

*/

#include "CimProtocol.h"
#include "Timer.h"
#include "usb_serial.h"
#include "Adc.h"
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include <stdio.h>

#define ARE_MINIMAL_VERSION 1
const uint32_t TEENSY_CIM_UNIQUE_NUMBER = 0x050606FD;

uint8_t autoreply_num=0x80;

const char TEENSY_CIM_FEATURELIST[]=
{

0x00,0x00, // unique number, data: 4 bytes
0x02,0x00, // Schwellwert zur Eventerzeugung setzen

48

0x03,0x00, // Sendet Events, 0 wenn aktueller Wert zuerst höher als der Schwellwert war und dann darunter fällt, 1 wenn
aktueller Wert niederiger als Schwellwert war und dann darüber steigt
0x04,0x00, // Activate periodic ADC Reports, data: 2 bytes: period in milliseconds (0=off)
0x05,0x00, // ADC value report (berechneter Mittelwert), data: 2 bytes, Mittelwert wird ständig gesendet

} ;

struct ARE_frame_t ARE_frame;
struct CIM_frame_t CIM_frame;

unsigned char readstate=0;
unsigned int datapos=0;
uint8_t first_packet=1;
volatile uint16_t threshold=200;
volatile uint16_t selection=0;

uint16_t ADC_updatetime=0;

void setupHardware();

void init_CIM_frame (void)
{
 CIM_frame.packet_id=CIM_FRAME_START; // '@','T': Packet-ID/sync bytes
 CIM_frame.cim_id=CIM_ID_TEENSY;
}

uint8_t process_ARE_frame(uint8_t status_code)
{

uint8_t ack_needed;
 uint8_t data_size=0;
 uint8_t command;

command=(uint8_t)ARE_frame.request_code;
 CIM_frame.cim_feature=ARE_frame.cim_feature;
 CIM_frame.serial_number=ARE_frame.serial_number;
 CIM_frame.reply_code=(((uint16_t)status_code)<<8) + command;
 data_size=(uint8_t)ARE_frame.data_size;

 ack_needed=1;

 if ((status_code & CIM_ERROR_INVALID_ARE_VERSION) == 0)
 {

// UART_Print(" feature "); UART_Putchar(command);
// no serious packet error

switch (command) { // process requested command

case CMD_REQUEST_FEATURELIST:

if (data_size==0) {
reply_FeatureList(); // reply requested feature list
ack_needed=0;

 } else status_code |= CIM_ERROR_INVALID_FEATURE;
break;

case CMD_REQUEST_RESET_CIM:

 if (data_size!=0) status_code |= CIM_ERROR_INVALID_FEATURE;
 break;

case CMD_REQUEST_START_CIM:
if (data_size==0) {

cli();
init_CIM_frame();
setupHardware();
start_timer1();
sei();

} else status_code |= CIM_ERROR_INVALID_FEATURE;
 break;

49

case CMD_REQUEST_STOP_CIM:
if (data_size==0) {

first_packet=1; // reset first frame indicator etc.
stop_timer1();

 } else status_code |= CIM_ERROR_INVALID_FEATURE;
 break;

case CMD_REQUEST_READ_FEATURE: // read feature from CIM
switch (ARE_frame.cim_feature) {

case TEENSY_CIM_FEATURE_UNIQUENUMBER: //read unique serial number
 if (data_size==0) {
 reply_UniqueNumber();
 ack_needed=0;
 }else status_code |=CIM_ERROR_INVALID_FEATURE;
 break;

 default: // not a valid read feature;

status_code |= CIM_ERROR_INVALID_FEATURE;
}
break;

case CMD_REQUEST_WRITE_FEATURE: //write feature to CIM

switch (ARE_frame.cim_feature) { //which feature address ?
case TEENSY_CIM_FEATURE_MODE_SELECTION:

if (data_size==2) {
 cli();

selection = (uint16_t)ARE_frame.data[0];
selection += ((uint16_t)ARE_frame.data[1])<<8;

 sei();
 }
 break;

 case TEENSY_CIM_FEATURE_SET_THRESHOLD:

if (data_size==2) {
cli();
threshold = (uint16_t)ARE_frame.data[0];
threshold += ((uint16_t)ARE_frame.data[1])<<8;

 sei();
}

 break;

/*case TEENSY_CIM_FEATURE_SET_ADCPERIOD:
if (data_size==2) {
cli();
ADC_updatetime= (uint16_t)ARE_frame.data[0];
ADC_updatetime+= ((uint16_t)ARE_frame.data[1])<<8;

 sei();
}
break;*/

 default: // not a valid write feature;
 status_code |= CIM_ERROR_INVALID_FEATURE;
 }
 }

}

 if (status_code & CIM_ERROR_INVALID_FEATURE) { // invalid data size or feature
 // LEDs_ToggleLEDs(LED5); // indicate wrong feature
 // UART_Print(" invalid data size or no feature ");
 }

if (ack_needed) {

reply_Acknowledge();
 }

 return(1);
}

50

void reply_FeatureList(void)
{

if (UEINTX & (1<<RWAL)) { //wenn Buffer nicht voll ist
CIM_frame.reply_code |= (CIM_ERROR_CIM_NOT_READY<<8);

}
 if (!(UEINTX & (1<<RWAL))) { //wenn Buffer voll ist
 CIM_frame.data_size=sizeof(TEENSY_CIM_FEATURELIST); // feature list length

usb_serial_write ((uint8_t *)&CIM_frame, CIM_HEADER_LEN);
usb_serial_write ((uint8_t *)&TEENSY_CIM_FEATURELIST, CIM_frame.data_size);

 }
}

void reply_UniqueNumber(void)
{

CIM_frame.data_size=4; // lenght of unique number
usb_serial_write ((uint8_t *) &CIM_frame, CIM_HEADER_LEN);
usb_serial_write ((uint8_t *) &TEENSY_CIM_UNIQUE_NUMBER, CIM_frame.data_size);

}

void reply_Acknowledge(void)
{

if ((UEINTX & (1<<RWAL))) { //wenn Buffer nicht voll ist
CIM_frame.reply_code |= (CIM_ERROR_CIM_NOT_READY<<8);

}

 if (!(UEINTX & (1<<RWAL))) { //wenn Buffer voll ist

CIM_frame.data_size=0; // no data in ack frame
 usb_serial_write ((uint8_t *) &CIM_frame, CIM_HEADER_LEN);

}
}

void reply_DataFrame(void)
{

usb_serial_write ((uint8_t *) &CIM_frame, CIM_HEADER_LEN);
 usb_serial_write ((uint8_t *) CIM_frame.data, CIM_frame.data_size);
}

void update_autoreplynum(void) {

autoreply_num++;
if (autoreply_num==0) autoreply_num=0x80;
CIM_frame.serial_number=autoreply_num;
CIM_frame.reply_code=CMD_EVENT_REPLY;

}

void generate_ADCFrame(uint16_t adcval)
{

CIM_frame.cim_feature=TEENSY_CIM_FEATURE_ADCREPORT;
 CIM_frame.data[0]=(uint8_t)(adcval&0xff);
 CIM_frame.data[1]=(uint8_t)(adcval>>8);
 CIM_frame.data_size=2;
 update_autoreplynum();
 reply_DataFrame();
 PORTD ^= (1 << 6);
}

void generate_EventFrame(int a)
{
 CIM_frame.cim_feature=TEENSY_CIM_FEATURE_SEND_EVENT;
 CIM_frame.data[0]=a;
 CIM_frame.data_size = 1;
 update_autoreplynum();
 reply_DataFrame();
 PORTD ^= (1 << 6);
}

#define FRAME_DONE 99
//void parse_CIM_protocol(unsigned char actbyte)

51

void parse_CIM_protocol(void)
{

uint32_t checksum=0;
static uint8_t transmission_mode;

 static uint8_t reply_status_code;
 static uint8_t last_serial;
 uint8_t actbyte;

while (usb_serial_available())

 {
//PORTD |= (1<<6);

 actbyte=usb_serial_getchar();

switch (readstate)
 {

case 0: // first sync byte
reply_status_code=0;
if (actbyte=='@') readstate++;
break;

case 1: // second sync byte

if (actbyte=='T') readstate++;
else readstate=0;
break;

 // packet in sync !

case 2: // ARE-ID: SW-version low byte
ARE_frame.are_id=actbyte;
readstate++;
break;

case 3: // ARE-ID: SW-version high byte

ARE_frame.are_id+=((uint16_t)actbyte)<<8;
if (ARE_frame.are_id < ARE_MINIMAL_VERSION)
//outdated ARE ?

reply_status_code |= CIM_ERROR_INVALID_ARE_VERSION;
readstate++;
break;

case 4: // data length low byte

ARE_frame.data_size=actbyte;
readstate++;
break;

case 5: // data length high byte

ARE_frame.data_size+=((uint16_t)actbyte)<<8;
if (ARE_frame.data_size > DATABUF_SIZE) { // dismiss

packets of excessive length
readstate=0;
//ARE_frame.data_size=0;
//reply_status_code |= CIM_ERROR_INVALID_FEATURE;
}
else readstate++;
break;

case 6: // serial_number

ARE_frame.serial_number = actbyte;
if (first_packet) // don't check first serial
first_packet=0;
else if (actbyte != (last_serial+1)%0x80) //check current serial number
reply_status_code |= CIM_ERROR_LOST_PACKETS;

last_serial=actbyte;
readstate++;
break;

case 7: // CIM-feature low byte

52

ARE_frame.cim_feature= actbyte;
readstate++;
break;

case 8: // CIM-feature high byte

ARE_frame.cim_feature+=((int)actbyte)<<8;
readstate++;
break;

 case 9: // Request code low byte (command)
ARE_frame.request_code=actbyte;
readstate++;
break;

case 10: // Request code high byte (transmission mode)

 transmission_mode=actbyte; // bit 0: CRC enable
 // reply_status_code|=(actbyte & CIM_STATUS_CRC);
 // remember CRC state for reply

if (ARE_frame.data_size>0) {
readstate++;
datapos=0;

}

else { // no data in packet

if (transmission_mode & CIM_STATUS_CRC)
readstate+=2; // proceed with CRC

else readstate=FRAME_DONE; //frame is finished here!

 }
 break;

case 11: // read out data

ARE_frame.data[datapos]=actbyte;
datapos++;
if (datapos==ARE_frame.data_size)
{

if (transmission_mode & CIM_STATUS_CRC) //with CRC: get checksum
readstate++;
else readstate=FRAME_DONE; // no CRC: frame is finished here !

 }
 break;

case 12: // checksum byte 1

checksum=actbyte;
readstate++;
break;

case 13: // checksum byte 2

checksum+=((long)actbyte)<<8;
readstate++;
break;

case 14: // checksum byte 3

checksum+=((long)actbyte)<<16;
readstate++;
break;

case 15: // checksum byte 4

checksum+=((long)actbyte)<<24;
// check CRC now (currently not used):
//if (checksum!=crc32(ARE_frame.data, ARE_frame.data_size))
reply_status_code |= CIM_ERROR_CRC_MISMATCH;

// frame finished here !
readstate=FRAME_DONE;
break;

default: readstate=0; break;

 }

53

if (readstate==FRAME_DONE) { // frame finished: store command in ringbuffer
process_ARE_frame(reply_status_code);

 readstate=0;
 }
 }
}

