

AsTeRICS Deliverable 4.5

Final Prototype of the AsTeRICS Runtime System

FHTW, UCY

AsTeRICS – Assistive Technology Rapid Integration & Construction Set
Grant Agreement No.247730
ICT-2009.7.2 - Accessible and Assistive ICT
Small or medium-scale focused research project

Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its

sole risk and liability.

The document reflects only the author‟s views and the Community is not liable for any use that may be

made of the information contained therein.

Document Information

Issue Date 30 June 2012

Deliverable Number D4.5

WP Number WP4 Software

Status Final document

Dissemination Level CO

PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 3

Version History

Version Date Changed Author(s)

0.1 June 2nd, 2012 First draft Chris Veigl
(FHTW)

0.2 June 16th, 2012 ARE PT2 changes Konstantinos
Kakousis
(UCY)

0.3 June 19th,
2012

CIM description Christoph Weiss
(FHTW)

0.4 June 21st, 2012 Added peer review comments and
changes

Chris Veigl
(FHTW)

0.5 June 25th, 2012 Integrated comments from peer review Konstantinos
Kakousis (UCY)

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 4

Table of Contents

1 Introduction .. 5

1.1 Relationship to other AsTeRICS deliverables .. 5

2 The new Graphical User Interface .. 6

2.1 The main menu ... 7

2.2 The ARE Desktop ..12

2.3 Middleware GUI Services ...12

3 New ARE Services and Utilities ...13

3.1 ARE core events notification service ..14

3.2 Data Synchronization ...14

3.3 Dynamic Properties ..15

3.4 Secure Dynamic Plugin Loading ...16

3.5 Improved Thread Pooling ...16

3.6 Enhanced CIM Communication Services ...16

3.6.1 Interface Unification...17

3.6.2 Uniquely Identifiable CIMs ...17

3.6.3 Bluetooth Problems ...18

4 Conclusions ...18

5 References ..20

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 5

1 Introduction

The purpose of this document is to provide a detailed description of the final version of the

implemented AsTeRICS Runtime Environment (ARE). The ARE provides the necessary

middleware and infrastructure to deploy AsTeRICS models for Assistive Technology

applications. ARE models are serializable manifest files, describing the composition of

sensor-, processor-, and actuator software plugins into complex Assistive Technology

applications. Furthermore, the ARE manages remote connections to the graphical AsTeRICS

Configuration Suite (ACS, D4.4 [1]) and provides necessary services for plugin developers.

Some example services are connection management from/to Communication Interfaces

Modules (CIMs), a logging and exception handling, data synchronization, GUI helper

methods, etc.

In the current document, we provide a thorough overview of the ARE advances implemented

since the release of the first prototype. The ARE has been extended to support more

advanced operations and ease the rapid prototyping and execution of assistive applications.

Based on the user evaluation results as well as feedback from plugin developers, the ARE

has been modified to provide optimized performance, better support in displaying plugins‟

GUI elements, improved communication with the ACS and smoother communication

between plugins and the AsTeRICS middleware.

The rest of this document is structured as follows: section 2 presents the new ARE GUI with

a description of the API methods for plugin developers, section 3 presents the new ARE

services and utilities that have been added since the first prototype. Section 4 concludes the

deliverable.

1.1 Relationship to other AsTeRICS deliverables

This deliverable is related to the following AsTeRICS deliverables:

 D2.2 (Updated System Specification and Architecture) [2]: This document describes

in detail the updates in hardware and software requirements for the AsTeRICS

system as they have been depicted after the user tests and developers‟ feedback on

PT1.

 D4.4 (Final Prototype of the AsTeRICS Configuration Suite) [1]: This document

describes updates on the AsTeRICS configuration suite, some of these updates

affect directly the runtime environment.

 Developer‟s Manual: the updated version of the developer‟s manual for the final

AsTeRICS prototype contains further information about the architecture and the

AsTeRICS SW-framework, including plugin development examples and how-to,

ASAPI / Thrift updates, as well as updates on naming conventions.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 6

2 The new Graphical User Interface

Although the ACS serves as the main graphical user interface unit in the AsTeRICS system,

the ARE also provides a graphical user interface in order to allow end-users to interact

directly with the runtime environment and monitor execution of running applications. In

prototype 1 we presented a minimal „control panel‟ for simulating ASAPI functions, mainly

used for development and debugging purposes as an easy way for testing the deployment of

various components and their reaction on various ASAPI commands.

The image below shows a screenshot from the PT1 ARE GUI. The old GUI was nothing

more than a basic menu providing easy access to ASAPI commands. Although this was a

handy way to test the ARE-ACS interconnection, we have decided to extend the ARE GUI for

the second prototype.

Figure 1: The ARE GUI in PT1

The ARE GUI for the second prototype has been evolved to a useful monitoring tool that can

be used for better visualizing the status of the model - including the display of live signals

and allows a GUI-based interaction with the runtime environment.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 7

Figure 2: The ARE GUI in PT2

2.1 The main menu

As in PT1, we have a main menu with three items:

Figure 3: Main menu in the ARE GUI (PT2)

 File: provides access to main ASAPI functions as listed below:

Menu Item ASAPI function Description

Show bundles − Displays on the console a

list of the plugins currently

deployed on the ARE.

Store model storeModel(String modelInXML,

String filename)

Stores the currently

deployed XML under a

default name. A

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 8

confirmation message is

printed on the console.

List stored models listAllStoredModels() Displays on the console a

list of all stored model file

names found inside the

default models folder.

Delete model file deleteModelFile (String filename) Deletes the default xml

model. A confirmation

message is printed on the

console.

Get model getModel() Prints on the console the

XML representation of the

currently deployed model.

Get model file getModelFromFile(String filename) Prints on the console the

XML representation of the

default model.

Get components getComponents() Prints on the console the

currently deployed

component instances

(including multiple

instances of the same

component type).

Get channels getChannels(String componentID) Prints on the console the

IDs of all the channels that

include the given

component instance either

as a source or target.

Get all ports getAllPorts(String componentID) Prints on the console the

IDs of all the ports (i.e.,

includes both input and

output ones) of the

specified component

instance.

Get output ports getOutputPorts(String

componentID)

Prints on the console the

IDs of all the output ports

of the given component

instance.

Get input ports getInputPorts(String componentID) Prints on the console the

IDs of all the input ports of

the given component

instance.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 9

Get component property

keys

getComponentPropertyKeys(String

componentID)

Prints on the console the

IDs of all properties set for

the specified component.

Get component property

values

getComponentProperty(String

componentID, String key)

Prints on the console the

value of the property with

the specified key in the

component with the

specified ID.

Get port property keys getPortPropertyKeys(String

componentID, String portID)

Prints on the console the

IDs of all properties set for

the specified port.

Get port property values getPortProperty(String

componentID, String portID, String

key)

Prints on the console the

value of the property with

the specified key of the

port with the specified ID

in the component with the

specified ID.

Set component property

values

setComponentProperty(String

componentID, String key, String

value)

Sets the property with the

specified key in the

component with the

specified ID with the given

string representation of the

value and prints a

confirmation message.

Set port property values setPortProperty(String

componentID, String portID, String

key, String value)

Sets the property with the

specified key in the port

with the specified ID with

the given string

representation of the value

and prints a confirmation

message.

Remove component removeComponent(String

componentID)

Deletes the instance of the

component that is

specified by the given ID

and prints a confirmation

message.

Get log file getLogFile() Prints on the console the

logged messages since

the ARE instantiation.

Query status queryStatus(boolean fullList) Prints on the console

errors that may have been

reported from deployed

components or the runtime

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 10

environment itself. If the

given argument is true the

complete log history is

printed, otherwise only

messages that have not

been printed in the past.

Table 1: the main ASAPI function, accessible via the File menu.

 Model: provides access to the main methods for interacting with models. From this

menu item you can Deploy, Start, Stop or Pause a model. The deploy submenu item

will open a file chooser window for selecting models to deploy from a local folder.

Figure 4: Options window in ARE GUI (PT2)

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 11

 About/Options: the new ARE GUI supports an options menu where various

parameters can be set up depending on the usecase (see Figure 4). These options

are particularly useful when we need to maximize available space for displaying

plugin GUI elements on the personal device. The options are stored in system files

and will be remembered the next time the ARE is deployed. In detail, the available

options are:

o Activate Fullscreen: If selected, the ARE widow will be maximized and set to

fullscreen the next time we start ARE.

o Hide frame decoration: If selected, window decorations will be hidden. In

other words, the extra bar added by the runtime environment for

minimizing/maximizing/closing the window will be hidden. This allows us to

save some space as well as achieve better mapping between the ACS GUI

Designer and the ARE main window (see Section 2.2). In order for this option

to take effect, the ARE needs to be restarted since Java does not allow

hiding/showing the frames after the application launch.

Figure 5: ARE GUI (PT2): with and without frame decoration.

o Show control panel: The control panel is a side frame acting as a

toolbar for quick access to the main module functionalities, namely:

Deploy, Start, Pause and Stop. Mainly for space reasons this side

bar can be shown or hidden at will, using the Show Control panel

option.

o Background Color: This option allows the end user to specify a

color for the main window. It utilizes the built in color picker for

selecting any color easily.

o Other options: In addition to the abovementioned options, the

ARE will “remember” the last position and dimensions of the ARE

window and will use these values next time the ARE is started.

Figure 6: ARE GUI

(PT2): Control Panel.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 12

2.2 The ARE Desktop

We refer to the ARE main window as ARE Desktop which is used for displaying GUI

elements from plugins participating in a running model. A great advancement of the second

prototype is the ability of “designing” the placement and size of the GUI elements directly in

the ACS. The latter has been enriched with a drag n‟ drop editor where the designer can

specify the position and size of any GUI element. Figure 7 shows an example of how the

designed placement has been transmitted from the ACS GUI Designer to the ARE Desktop.

Figure 6: GUI composition using the ACS GUI designer

In order to achieve this, we have amended the deployment models with a gui element per

Component which specifies the position and size as a percentage of available space (screen

size). This means that we can perform changes on the way that windows are positioned “on

the fly” i.e., without the need for starting/stopping ARE.

<xs:complexType name="guiType">
 <xs:sequence>
 <xs:element name="posX" minOccurs="1" maxOccurs="1" type="xs:integer"/>
 <xs:element name="posY" minOccurs="1" maxOccurs="1" type="xs:integer"/>
 <xs:element name="width" minOccurs="1" maxOccurs="1" type="xs:integer"/>
 <xs:element name="height" minOccurs="1" maxOccurs="1" type="xs:integer"/>
 </xs:sequence>
</xs:complexType>

Table 2: the gui element addition to the deployment model schema.

2.3 Middleware GUI Services

The AsTeRICS middleware provides some services to the plugin developers in order to allow

them displaying their GUI element onto the ARE Desktop. The middleware services

encapsulate the complexity of dealing with positioning and allow displaying all GUI elements

onto the same container: the ARE Desktop.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 13

All GUI services are defined in eu.asterics.mw.services.AREServices so developers need to

import this class in order to get access to the following methods:

 void displayPanel (JPanel panel, IRuntimeComponentInstance componentInstance,

boolean display)

This method is used for displaying (or hiding) a plugin‟s panel at/from the ARE

desktop. Developers need to pass

o the panel they want to be displayed (or removed)

o the plugin object, in order to help the middleware finding the desired position and

dimensions from the deployment model

o a boolean argument specifying if they wish to hide or show the given panel.

 Dimension getAvailableSpace(IRuntimeComponentInstance componentInstance)

The space that each plugin will occupy on the ARE desktop is defined by the designer

on the ACS and passed to the ARE via ASAPI. Plugin developers can get the

available space for their graphical elements by calling the getAvailableSpace method

which will return the space occupied for the plugin object passed as argument.

 Point getComponentPosition (IRuntimeComponentInstance componentInstance)

The positioning of plugin‟s GUI elements is defined by the designer on the ACS and

passed to the ARE via ASAPI. Plugin developers can get the position of their

graphical elements by calling the getComponentPosition which will return the position

on screen for the plugin object passed as argument.

 void adjustFonts(JPanel panel, int maxFontSize, int minFontSize, int offset)

This service can be used by plugin developers interested in auto-adjusting the fonts

of their GUI components depending on the space occupied for their plugins on the

ARE desktop. They need to pass

o a panel to which all the internal fonts will be auto-adjusted

o the maximum font size (in case there is more space available than needed)

o the minimum font size, in case there is too little space which causes the text to

become non-readable. Finally, the offset argument is used in case we want to

occupy a percentage of the available space

3 New ARE Services and Utilities

Deliverable D4.2 [3] already lists available ARE services that may be used by plugin

developers in order to interact with the middleware. Section 2.3 already lists available GUI

services. This section describes other services added since the first prototype.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 14

3.1 ARE core events notification service

The ARE core events notification service allows plugins to register/unregister to the ARE

middleware in order to receive notifications of ARE core events.

 void registerAREEventListener(IAREEventListener clazz)

It is sometimes necessary that plugins can be notified of various ARE events so they

can react as needed. This method can be called by component instances that wish to

be notified of such ARE events. Currently, the core events supported are:

o preDeployModel: registered ARE event listeners will be notified just before the

deployment of a model.

o postDeployModel: registered ARE event listeners will be notified immediately

after the deployment of a model.

o preStartModel: registered ARE event listeners will be notified just before the

currently deployed model is started.

o postStopModel: registered ARE event listeners will be notified immediately

after the deployed model has been stopped.

 void unregisterAREEventListener(IAREEventListener clazz)

Plugins already registered for receiving ARE core events can un-register using this

method.

3.2 Data Synchronization

After the release of the first prototype, we received requests from plugin developers for a

data synchronization service that will reduce the complexity of synchronizing incoming data

at the input ports of plugins, by providing an abstraction for this synchronization in the

middleware.

Some plugins need data of multiple ports to be available before they can start processing.

Due to the threaded nature of our input-ports, it could happen that one input port of a plugin

receives multiple values before another port gets one value, although both signal channels

deliver values at the same sampling rate. Therefore, plugin developers were expected to

provide a buffering mechanism at plugin level that will allow them to synchronize incoming

data.

The synchronization service provides a buffering mechanism at the middleware level that can

be utilized by plugin developers in order to make sure that incoming data of selected input

ports arrives synchronized.

In prototype 2, plugin developers are expected to extend the DefaultRuntimeInputPort

instead of implementing the IRuntimeInputPort. Basically, DefaultRuntimeInputPort provides

a default implementation for the necessary buffering methods, as shown in the table below.

public abstract class DefaultRuntimeInputPort implements IRuntimeInputPort {

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 15

 private boolean buffering;
 public void receiveData(final byte [] data) {
 ;
 }
 public void startBuffering (AbstractRuntimeComponentInstance c,
 String portID) {
 this.buffering = true;
 }
 public void stopBuffering (AbstractRuntimeComponentInstance c,
 String portID) {
 this.buffering = false;
 }
 public boolean isBuffered () {return this.buffering;}
}

Table 3: the DefaultRuntimeInputPort abstract class.

The designer can define that a plugin's input port should be synchronized with some other

input ports via the ACS. This will cause an argument change of the inputPort element on the

deployment model file (e.g., <inputPort portTypeID="inB" sync="true">). As soon as a

model is deployed on the ARE, the middleware collects per component every port noted as

synchronized port. When the model is successfully deployed and started, the ARE will buffer

data which enters synchronized input ports until data on all synchronized ports has arrived.

At that point, the ARE will call a new AbstractRuntimeComponentInstance callback method.

Developers that wish to support data synchronization need to implement the following

method at their component instances.

public void syncedValuesReceived(HashMap<String, byte[]> dataRow)

Where dataRow is a HashMap between Input Port ID and byte[]. For synchronized input

ports, instead of implementing the regular void receiveData(byte[] data) method which

delivers incoming data of a single port, developers need to implement the

syncedValuesReceived method which will be called from the ARE with synchronized data

from all the input ports that have been selected.

3.3 Dynamic Properties

Another new feature introduced in the second prototype are dynamic properties. In some

applications, developers needed a way to communicate to the ACS some “live” properties. A

typical example is the wave file player plugin which plays sound files when an event occurs.

Therefore, we needed a way to display available wave files in the ACS properties window.

Apart from the wave file player plugin, this feature is particularly useful for plugins that are

hardware dependent (selecting e.g. a soundcard or a midi player), or depend on the file

system.

If a plugin is implementing a dynamic property, the values will be requested from the ARE, as

soon as the ACS is synchronized with the ARE, via a new ASAPI function: List<String>

getRuntimePropertyList(String componentID, String key).

The ARE middleware will forward the request for valid property values to the component

instance with the given ID. For the second prototype we added the List<String>

getRuntimePropertyList(String key) method to the AbstractRuntimeComponentInstance class

which every AsTeRICS component extends. Therefore, any plugin that wishes to pass a

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 16

string list with dynamic property values (e.g. theavailable wave files) has to implement the

getRuntimePropertyList method. Finally, as soon as the targeted component returns the

string list to the middleware, the latter forwards the string list to the ACS via ASAPI. ACS will

dynamically update the propertiy list in the properties window [1].

3.4 Secure Dynamic Plugin Loading

For the first prototype, the ARE by default was starting every plugin that was available at the

AsTeRICS binary folder. This approach had several disadvantages: As new plugins continue

to arrive and the number of bundles to be started on ARE startup is increased, unnecessary

workload and performance delays occur. Furthermore, any dysfunctional plugin was

preventing the ARE middleware bundle to start.

For the second prototype, we shifted to a dynamic plugin loading where only bundles

participating in the deployed model are started. This change had significant performance

improvements and allows us to avoid starting malfunctioning plugins that are not even

necessary for a deployed model. The dynamic, programmatic plugin loading also allows us to

prevent unexpected exceptions with non-working plugins. With the current approach, if a

dysfunctional plugin is started, the ARE will detect the error and prompt a warning message

to the user, letting him know what plugin is preventing the normal execution of the runtime

environment. Finally, when a model is stopped, the ARE will also stop the participating

plugins (or OSGi bundles) - thus taking full advantage of the dynamic bundle loading offered

by the underlying OSGi framework.

3.5 Improved Thread Pooling

As described in [3], the ARE middleware makes use of the AsTeRICS Thread Pooling

system. In particular, the AstericsThreadPool class is based on the newCachedThreadPool

method of the java.util.concurrent.Executors class. The newCachedThreadPool method

creates a thread pool that creates new threads as needed, but will reuse previously

constructed threads when they are available. While this thread pooling approach has

significant performance advantages, it was causing some synchronization problems on our

thread-based data transition between ports. The synchronization problem was caused due to

the fact that we do not have access to the number of threads created and the sequence of

their execution using the cachedThreadPool. Therefore, pending tasks (waiting threads)

were executed in a non-FIFO order which caused troubles in data processing.

For the second prototype, we utilize an additional thread pool only for sending data between

ports. The new thread pool is based on the fixedThreadPool java method which is not multi-

threaded and it is used for performing the data transportation in a sequential manner. The old

thread pool is still used for any other thread execution in AsTeRICS.

3.6 Enhanced CIM Communication Services

For the final prototype, the integration of Bluetooth and Zigbee communication required

certain changes in the CIM communication management. For a preparation to support

different kinds of devices that use a COM port for communication, a generalized

communication controller class, hiding the fact whether a common CIM or a CIM connected

via wireless media, was extracted.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 17

The listener interface for incoming data was changed in such a way that the ARE is not

aware of whether a component is a peripheral adhering to the CIM protocol or any other

module using its own protocol.

All incoming data is passed through the interface method:

 public void handlePacketReceived(CIMEvent e);

The CIMEvent object contains the packet that has been transferred. This can be either a

CIM protocol packet or a generic byte stream. The plugin receiving the notification should

process the data correspondingly.

The use of serial input data for control applications proved that the approach using a

decoupling of the monitor thread for incoming data and the notification of received data via a

blocking queue introduced too much delay on the data and made control impossible. Thus

for higher data rates, a further extension was needed.

3.6.1 Interface Unification

All access to the different types of serial communication is done via the class

CIMPortManager. The class provides three types of connections:

public CIMPortController getConnection(short cimId)

public CIMPortController getRawConnection(String portName, int baudRate,

boolean highSpeed)

The method getConnection() returns a port controller for a requested CIM Id if this CIM has

been detected on the platform. GetRawConnection returns either a raw port controller

handling incoming data just like described above, or - if highSpeed is set - a high speed raw

port controller where the decoupling between RX monitoring and processing thread has been

removed and an input/output stream has been implemented.

The final prototype‟s hardware updates reduced the amount of digital inputs and outputs per

CIM significantly. Thus it might be necessary to use two CIMs of the same type on one

platform. During the first prototype, a way to uniquely identify a CIM was devised but it was

not implemented in ARE. The method to identify a CIM is via the id tuple consisting of the

CIM‟s type id and a unique serial number which is unique for every CIM of a specific type.

3.6.2 Uniquely Identifiable CIMs

For the final prototype, the CIM communication service was extended to support the use of

two or more CIMs of the same type simultaneously. In the CIM identification phase, the

CIM‟s unique number is saved with the CIM type and all the available CIM‟s are placed in a

list. The plugin developer now has two options to access these CIMs:

public CIMPortController getConnection(short cimId)

public CIMPortController getConnection(short cimId, long uniqueNumber)

Calling the method getConnection() with only the CIM Id as parameter will return the first CIM

of a certain type that was found. If a unique number is given, only the corresponding CIM

connection will be returned or an error is raised if this uniquely identified CIM is not

connected.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 18

Thus it is necessary for the plugin developer to provide means to define how the CIM‟s

unique number is to be passed to communication service methods if he deems it necessary

to work with multiple CIMs. The CIM communication services provide a method to list all the

attached unique numbers of CIMs of a certain type in order to allow the developer to work

with dynamic properties for the CIM selection.

3.6.3 Bluetooth Problems

During the work on the first prototype, the automatic CIM detection occasionally caused long

delays or hang ups of the ARE. Investigations led to the result that this was related to

Bluetooth devices using the Microsoft Bluetooth stack. This stack creates two virtual COM

ports, one for incoming data, one for outgoing.

Automatic detection of CIMs works by iterating through all COM ports and sending a CIM

detection packet over the serial interface. Opening the Bluetooth ports caused numerous

problems.

On the one hand it occurs that one port cannot send data, which will cause problems when

trying to close the port as the event listener cannot be removed because the send operation

is still pending. Opening the other port caused the PC to not recognize the Bluetooth ports

anymore until the devices have been disconnected and paired again.

Analysis of the source code of RXTX (version 2.1.7) revealed that the first problem was

caused by the detection of writeable COM ports. This is done by enumerating the COM ports

via the Windows API CreateFile() function which hung upon opening the sender COM port.

This could be remedied by using a different method to enumerate the serial ports, in this

case the function QueryDosDevice() which returns a list of all the devices attached to a

Windows installation. From within this list, all the COM ports can be extracted.

The second problem was caused by the use of overlapped (or asynchronous) I/O operation

without timeout in the serial write function of the RXTX library. The fact that the receiver

Bluetooth port did not allow GetOverlappedResult() to finish if no timeout was set, caused the

serial port object to never finish the write operation and in the end locking the native code

portions when the port was to be closed.

Introduction of a timeout to GetOverlappedResult with a repeat counter allowed to eliminate

the problem and serial_write to fail silently. After these changes to the native code of RXTX,

the automatic detection of CIMs attached via Bluetooth worked the same way as if the

connection was established by wire.

4 Conclusions

Since the release of the first AsTeRICS prototype, we have been extending and stabilizing

the runtime environment based on new requirements defined in [2] and feedback from our

developers. Currently we have a stable runtime environment capable of satisfying the most

needs of Assistive Technology developers and flexible enough to support new features.

In this document we have presented the main improvements of the ARE since the release of

the first prototype. Although no drastic changes have emerged at the underlying architecture

or core functionality, we have significantly improved the ARE GUI and improved the

middleware services and utilities which are provided to the developers.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 19

All major goals for the architectural framework implementations, which were derived from

D2.2, have been accomplished. We will continue the ARE stabilization and fine tuning during

WP5 integration tests.

D4.5 Final Prototype of AsTeRICS Runtime System AsTeRICS

30 June 2012 Page 20

References

1 AsTeRICS Deliverable D4.4 “Final Prototype of ACS”.

2 AsTeRICS Deliverable D2.2 “Updated System Specification and Architecture”.

3 AsTeRICS Deliverable D4.2 “Prototype 1 of the AsTeRICS Runtime System”.

