

AsTeRICS Deliverable D2.1

System Specification and Architecture

UCY

AsTeRICS – Assistive Technology Rapid Integration & Construction Set
Grant Agreement No.247730
ICT-2009.7.2 - Accessible and Assistive ICT
Small or medium-scale focused research project

Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its

sole risk and liability.

The document reflects only the author’s views and the Community is not liable for any use that may be

made of the information contained therein.

Document Information

Issue Date 30 June 2010

Deliverable Number D2.1

WP Number WP2 System Specification and Architecture

Status Final

Dissemination Level RE

PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 3

Version History

Version Date Changed Author(s)

0.1 12 Feb. 10 First draft Konstantinos
Kakousis
(UCY)

0.2 19 Feb. 10 First overview of the architecture provided for
discussion
STARLAB’s Changes accepted

Nearchos Paspallis,
Konstantinos
Kakousis
(UCY)

0.3 04. Mar. 10 Integrated contributions of partners, updated
document structure

Nearchos Paspallis,
Konstantions
Kakousis
(UCY)

0.4 06. Mar. 10 Integrated requirements, added ASAPI
description, glossary, updated document
structure

Chris Veigl
(FHTW)

0.5 07. Mar. 10 Corrected template (heading 2), updaded
references

Gerhard Nussbaum
(KI-I)

0.6 08. Mar. 10 Added requirements and specifications Chris Veigl
 (FHTW)

0.7 09. Mar. 10 UCY Reviewed the new version and accepted
it with minor comments

Nearchos Paspallis,
Konstantions
Kakousis
(UCY)

0.8 10. Mar. 10 Latest template Konstantions
Kakousis (UCY)

0.9 11.Mar.10 STARLAB sent contribution on Section 5 Javier Acedo
(STARLAB)

0.10 31. Mar. 10 UPMC update to Smart Vision Module
specifications + Glossary

Edwige Pissaloux,
Francis Martinez
(UPMC)

0.11 13.Jun.10 UCY Updated Section 4 with ARE and ASAPI
details

Nearchos Paspallis
(UCY)

0.12 14.Jun.10 KI-I Updated Section 4 with ASAPI details Roland Ossmann
(KI-I)

0.13 15.Jun.10 FHTW reworked large parts of the
requirements and changed the HW platform
specifications. Also integration of ASAPI
definition from UCY

Chris Veigl
 (FHTW)

0.14 16.Jun.10 Integrated contribution from CEDO in Section
3

Tomas Drajsajtl
(CEDO)

0.15 16.Jun.10 KI-I contribution in the gripper section and
Conclusions

Roland Ossmann
(KI-I)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 4

0.16 16.Jun.10 STARLAB Updates in Sections 2, 4, 3 and 5 Javier Acedo, Aureli
Soria Frisch
(STARLAB)

0.17 16.Jun.10 CEDO update in Section 3 Tomas Drajsajtl
(CEDO)

0.18 16.Jun.10 UPMC Contribution in Sections 2.1.3 and 3.4 Edwige Pissaloux,
Francis Martinez
(UPMC)

0.19 16 Jun. 10 Updated Native ASAPI section Karol Pecyna
(HARPO)
Paul Blenkhorn
(SENSORY)

0.20 21 Jun.
2010

Review Jarek Urbański
(HARPO)

0.21 27 Jun.
2010

Review Zdenek Barton
(CEDO)

1.0 02. Jul.
2010

Final UCY, FHTW, KI-I

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 5

Glossary and Declaration of Terms

1 Terms Specific to AsTeRICS

ACS AsTeRICS Configuration Suite

A graphical software application running on the host PC for AsTeRICS

model configuration and monitoring of the runtime system

ARE AsTeRICS Runtime Environment

The configured system model (which consists of pluggable components

and their interconnections) which has been deployed to the execution

environment (usually the AsTeRICS embedded computing platform)

ASAPI AsTeRICS Application Programming Interface

Provides methods to setup and interact with the ARE via a TCP/IP

connection. The ASAPI builds the functional framework used by the ACS to

generate and deploy the ARE system model and to configure ARE

components. Furthermore, the ASAPI can be used to send and retrieve live

data to or from the ARE, and to get logging/status from the ARE. The

ASAPI can be used by third-party software applications integrate the ARE.

CIM Communication Interface Module

Hardware interface and dedicated driver software to connect a sensor /

actuator module or to use a standardized communication medium/protocol.

EP Embedded Platform (aka AsTeRICS Personal Platform)

A customized hardware / PCB with high performance low power CPU and

dedicated Communication Interface Modules to support connection of

sensors and actuators.

PCOM Pluggable Component Module

Software components of the ARE, which can be grouped into Signal

Sources (featuring output ports), Signal Processors (featuring input and

output ports) and Signal Sinks (featuring input ports

SVM Smart Vision Module

A computer vision sensor with dedicated computing module for feature

extraction. Transfers images features to the ARE.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 6

2 Other Relevant Technical Terms

BCI Brain Computer Interface

BNCI Brain or Neural Computer Interface

FFT Fast Fourier Transformation

IR Infrared

JNI Java Native Interface

OS Operating System

OSGi Open Service Gateway initiative

CPU Central Processing Unit

DSP Digital Signal Processor

IMU Inertial Measurement Unit

PCB Printed Circuit Board

SRAM Static Random Access Memory

USB Universal Serial Bus

VPIF Video Port Interface

LCD Liquid Crystal Display

UART Universal Asynchronous Receiver/Transmitter

DAC Digital to Analog Converter

HID Human Interface Device

PCA Principal Component Analysis

CSP Common Spatial Pattern

OVR One Versus the Rest

CVT Canonical Variates Transformation

LDA Linear Discriminant Analysis

ADC Analog to Digital Converter

GPIO General Purpose Input / Output

EMG Electromyography

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 7

EEG Electroencephalography

EOG Electrooculography

SVEM Support Vector Machine

FPR False Positive Rate

TPR True Positive Rate

VOG Video-Oculography

SDK Software Development Kit

HMI Human Machine Interface

FIR Finite Impulse Response

JVM Java Virtual Machine

FIFO First In First Out

MVC Model View Controller

MVVM Model View Viewmodel

WPF Windows Presentation Foundation

COTS Commercial Off-The-Shelf

AT Assistive Technology

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 8

Table of Content

Document Information ... 2

Version History .. 3

Glossary and Declaration of Terms ... 5

Table of Content .. 8

1 Introduction ..11

1.1 AsTeRICS System Architecture Overview ..11

1.2 Relationship to other AsTeRICS Deliverables ..12

1.3 Relationship to Description of Work ..12

1.4 Structure of This Document ..13

2 AsTeRICS Requirement Analysis ..14

2.1 Hardware Requirements ..14

2.1.1 Hardware Requirements for the AsTeRICS Embedded Platform (EP)14

2.1.2 Requirements for AsTeRICS Pluggable Hardware Components15

2.1.3 Hardware Requirements for the AsTeRICS Smart Vision Module16

2.2 Software Requirements ..17

2.2.1 Software Requirements for Pluggable Component Modules17

2.2.2 Software Requirements for the AsTeRICS Runtime Environment19

2.2.3 Requirements for the AsTeRICS Configuration Suite21

2.2.4 Requirements for the AsTeRICS Application Programming Interface (ASAPI) 21

2.3 BNCI Evaluation Suite Requirements ...22

3 Hardware Specification and Architecture ...25

3.1 Specification of the AsTeRICS Embedded Platform ...26

3.1.1 Kontron pITX SBC - dimension and operating conditions26

3.1.2 Kontron pITX SBC - Functional Specifications...27

3.1.3 Block Diagram ...28

3.1.4 System setup and power requirements ...28

3.2 Communication Interface Modules ...30

3.2.1 Core Expansion Module ..30

3.2.2 Zigbee-CIM ...30

3.2.3 GPIO-CIM ...31

3.2.4 ADC-CIM ...31

3.2.5 DAC-CIM ...31

3.3 Custom Sensor and Actuator Modules ...31

3.3.1 Universal HID Actuator ..31

3.3.2 Generic Switches ..33

3.3.3 Accelerometer ...33

3.3.4 Strain Gauge ...33

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 9

3.3.5 Pneumatic Gripper actuator ...34

3.4 Smart Vision Module ..35

3.4.1 Smart Vision Module (SVM) Concept ..35

3.4.2 SVM Overview ..35

3.4.2.1 SVM First Prototype (PT1) ...36

3.4.2.2 SVM Final Prototype (PT2) ..37

3.4.3 Remote Eye-Gaze Tracker: Hardware Design...37

3.4.4 Remote Eye-Gaze Tracker: Software Design ..38

3.4.5 Head-Mounted Eye-Gaze Tracker: Hardware Design39

3.4.5.1 Hardware Architecture ..39

3.4.5.2 Camera Modules ..41

3.4.5.3 Inertial Measurement Unit ..45

3.4.6 Head-Mounted Eye-Gaze Tracker: Software Design47

3.4.7 Concluding Remarks ...48

4 Software Specification and Architecture ...51

4.1 System Model ..52

4.1.1 Pluggable Component Modules (PCOM) and Channels53

4.1.1.1 Signal processing PCOM for simple HMI..56

4.2 AsTeRICS Runtime Environment (ARE) ...57

4.2.1 Runtime Model Concepts ..58

4.2.1.1 Components ...59

4.2.1.2 Ports ..60

4.2.1.3 Channels ..62

4.2.1.4 Component architecture of ARE ...63

4.2.1.5 Assistive Technology Application Example ...65

4.2.1.6 Implementation Issues ...67

4.2.2 Software Layers in the ARE, Integration of Hardware67

4.3 AsTeRICS Configuration Suite (ACS)...68

4.3.1 Technologies, Frameworks and Patterns ..69

4.3.2 Graphical Presentation (View) ...69

4.3.3 Data Model ..70

4.3.4 Functionalities ...70

4.4 AsTeRICS Application Programming Interface (ASAPI) ...71

4.4.1 ASAPI and ARE interconnection ...78

4.4.1.1 ASAPI and ARE in the configuration process ...79

4.4.2 Native ASAPI ..82

5 BNCI Evaluation Suite ...83

5.1 BNCI Evaluation Suite User Classes and Requirements ..84

5.2 BNCI Evaluation Suite Assumptions and Dependencies ..84

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 10

5.3 BNCI Evaluation Suite Processing Architecture ..84

6 Summary and Conclusions ..86

References ...88

Appendix A ...90

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 11

1 Introduction

The purpose of Work Package 2: “System Architecture and Specification” is to define in

detail the requirements and characteristics of the Assistive Technology Rapid Integration and

Construction Set (AsTeRICS) project. AsTeRICS’ objective is to enable easy-to-use Assistive

Technology, based on user requirements and needs. This document aims to describe the

system specification and architecture for the overall project. In particular, we identify the

system requirements for hardware and software and present in detail the specification of the

hardware and software architecture.

1.1 AsTeRICS System Architecture Overview

The system architecture of AsTeRICS consists of hardware and software components, which

provide the flexible Assistive Technology Rapid Integration- and Construction Set.

Hardware Components:

 AsTeRICS Personal Platform – an embedded high performance computing system

 Communication Interface Modules (CIMs), allow attachment of sensors and actuators

 Sensors and actuators, which include:

o modules designed and manufactured by consortium members as major

objectives of the AsTeRICs project (like the Smart Vision Module)

o extensions of existing hardware of consortium members (like the Starlab

Enobio device)

o integration of commercial off-the-shelf AT devices (like special joysticks,

switches, IR-gateway etc.)

Software Components:

The software components consist of individual packages for host computer and for the

runtime environment. The software packages dedicated to the host computer are:

 the AsTeRICS Configuration Suite (ACS)

 the AsTeRICS Application Programming Interface (ASAPI)

 applications which are developed or extended in course of the AsTeRICS project

 the BNCI Evaluation Suite by Starlab

 AT-software solutions by SENSORY like the OSKA on-screen keyboard

The software components dedicated to the AsTeRICS Runtime Environment include:

 the middleware architecture for the ARE

 the Pluggable Component Modules (PCOMs):

 Signal Sources

 Signal Processors

 Signal sinks

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 12

The architectural framework as a whole provides the functionality of the AsTeRICS system

as defined in the Description of Work document [1], approved by the EC on 22-10-2009,

which can be summarised as follows:

 Making sensor data from the user available for processing on the platform (interfacing

with sensor module-drivers which are part of the operating system),

 Routing the sensor data to and among signal processing and signal shaping

elements, as defined by the interconnection of these elements, for the purpose of

extraction of relevant information about voluntary user commands. Furthermore,

routing this information to actuator elements,

 Controlling actuators for AT purposes (interfacing with actuator module-drivers

provided by the operating system),

 Enabling remote access to the embedded platform via TCP/IP (for download and

upload of actual configurations, error reporting and display of live data).

1.2 Relationship to other AsTeRICS Deliverables

The deliverable is related to the following AsTeRICS deliverables:

 D1.1 Report on Users, Preferences and Needs: AsTeRICS follows a user-centric

approach and the user needs and requirements are the main input for elicitation of

the system requirements.

 D1.3 “Technical Specifications”: This document describes the transformation of user

requirements into technical requirements and outlines basic use cases for the

AsTeRICS system. It thereby defines the capabilities which have to be met by the

AsTeRICS architecture.

 D2.4 “Report on the State of the Art” [3]: This document outlines the technological

basis for the planning of the AsTeRICS architecture and describes relevant hardware

and software components available on today’s market.

 D2.3 “Report on API specification for sensors to be integrated into the AsTeRICS

Personal Platform Prototype 1” [2]: This document shows the setup of software

plugins and the adjustment of plugin parameters using the AsTeRICS Application

Programming Interface

 D4.7 “Report on feasibility of OSGi porting to the AsTeRICS Personal Platform” [4]:

This document contains documentation of performance tests and porting efforts

which influenced the decision for the AsTeRICS Personal Platform hardware

1.3 Relationship to Description of Work

According to the Description of Work [1], AsTeRICS will provide a flexible and affordable

construction set for user driven Assistive Technologies or assistive functionalities. The

AsTeRICS architecture is derived from the user’s requirements and needs and combines the

flexibility and modularity of the Java programming language and OSGi compositional

framework with state-of-the-art software and hardware sensors and actuators.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 13

1.4 Structure of This Document

The deliverable is structured as follows. Section 1 first provides an overall view of the system

architecture and briefly describes the AsTeRICS approach in system architecture and

specification. Section 2 identifies the system requirements which are classified in hardware

requirements (Section 2.1), software requirements (Section 0) and requirements for the BNCI

evaluation suite (Section 2.3). Section 3 details the hardware specification of the embedded

platform and other custom hardware modules. In particular, Section 3.1 defines the

specification of the AsTeRICS Embedded Platform while Section 3.2 describes extra

communication modules needed. Section 3.3 defines the custom sensor- and actuator

modules we plan to develop while Section 3.4 defines the specifications of the AsTeRICS

Smart Vision Module. Section 4 details the software specification and architecture of the

configuration and runtime components and reveals the system model and middleware

platform components. In particular, Section 4.1 presents the AsTeRICS system model while

sections 4.2 and 4.3 describe the AsTeRICS runtime environment and configuration suite,

respectively. Finally Section 4.4 presents the AsTeRICS application programming interface.

Section 5 presents the architecture and specifications of the BNCI evaluation suite while

Section 6 concludes this document with an overview of the main contributions of this

deliverable to WP2 and to the AsTeRICS project in general.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 14

2 AsTeRICS Requirement Analysis

In the following sections, a comprehensive list of requirements for the overall AsTeRICS

system will be presented, clustered into the following subsections:

Hardware requirements

 Hardware requirements for the AsTeRICS embedded platform (Section 2.1.1)

 Requirements for AsTeRICS pluggable components (sensor and actuator hardware

modules) (Section 2.1.2)

 Hardware-requirements for the Smart Vision Module (Section 2.1.3)

Software requirements

 AsTeRICS Runtime Environment requirements (Section 2.2.2)

 AsTeRICS Configuration Suite requirements (Section 2.2.3)

 AsTeRICS Application Programming Interface requirements (Section 2.2.4)

A particular requirement will be identified by a prefix for the group and a unique number. The

requirement description includes the priority of a particular implementation and the expected

time to be delivered (i.e., either in the first or second prototype). Requirements identified as

high priority requirements should be provided as they reflect basic functionalities expected to

be delivered by the project as defined in the AsTeRICS Description of Work [1].

Requirements with medium or low priority are either "nice to have" features or extra

functionality not directly affecting the project’s goals.

2.1 Hardware Requirements

2.1.1 Hardware Requirements for the AsTeRICS Embedded Platform (EP)

The table below lists the hardware requirements for the AsTeRICS embedded platform as

they were elicited from the user needs identified in AsTeRICS deliverables D1.1 – “Report on

Users, Preferences and Needs”, D1.3 –“Technical Requirements” and D2.4 – “Review on

State of the Art”.

Nr. Requirement Description Priority Prototype

HW1 Size and weight The Embedded Platform hardware consists of small
modules which can be combined as needed. A display with
touchscreen (7 to 10 inches) can be added as a separate
module.

H 2

HW2 Low power
consumption

The hardware components have to operate with low power
requirements and/or offer power management functions for
acceptable battery lifetime.

M 1, 2

HW3 Temperature
Range

The desktop components shall have 0 to 60 ˚C temperature
range but the portable components which are intended to
be used also outside should have extended range at least
from -20 to 85 ˚C.

H 1, 2

HW4 Performance The Embedded Platform has to be powerful enough to
support online image processing functionalities, e.g. for the
Smart Vision Module or a webcam.

H 2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 15

HW5 Hot-Pluggability A connection or disconnection of a component should not
affect or interrupt the functionality of the rest of the system.
An automatic detection of a newly connected or
disconnected peripheral is desired.

L 1, 2

HW6

Affordable price The whole system has to be affordable at acceptable cost,
compared to other available AT products with similar or
less functionalities.

H 2

HW7 Portability The system can be battery powered and is usable without a
connection to the mains power supply for at least 5 hours.

H 2

HW8 Platform
Interfaces

The EP supports the hardware interfaces which are
necessary for connecting sensors and actuators in
sufficient amount (Bluetooth, 6 x USB, ZigBee, WiFi,
Ethernet).

H 1, 2

HW9 UART interface The EP supports integration with UART interface. H 1, 2

HW10 LCD interface The EP supports integration with an LCD display with
touchscreen.

H 2

HW11 Sufficient
Memory

A large non volatile memory is essential to hold operating
system, ARE components and system model
configurations (at least 4GB). A large RAM is needed for
the runtime system to work efficiently. (at least 512MB,
depending on the Operating System).

H 1, 2

HW12 Operating
System

For low latency processing of parallel sensor values
(multiprocessing), TCP/IP stack, memory management,
JAVA Virtual Machine, Windows or Linux based OS
solution should be supported.

M 2

Table 1: Hardware requirements for the AsTeRICS embedded platform

2.1.2 Requirements for AsTeRICS Pluggable Hardware Components

The table below lists the hardware requirements for pluggable components, such as sensors,

processors and actuators that the AsTeRICS system is expected to support by default.

Nr. Requirement Description Priority Prototype

Hardware Requirements for pluggable sensors

HSEN1 Generic switches
(GPIO CIM)

The AsTeRICS system supports connectivity to at least 5
generic switches via a dedicated module (GPIO-CIM,
3,5mm jacks, digital input).

H 1,2

HSEN2 Sweety! The AsTeRICS system should support Sweety! Switches
via Bluetooth connectivity.

L 2

HSEN3 USB HID devices The AsTeRICS system supports USB mice, keyboards
and joysticks via USB connectivity.

H 1, 2

HSEN4 9 DOF Razor
IMU

The AsTeRICS system supports the 9 DOF Razor Inertial
Measurement Unit.

H 1, 2

HSEN5 Strain Gauge The AsTeRICS system supports Strain Gauge
connectivity (via ADC-CIM).

H 1, 2

HSEN6 Touchscreen The AsTeRICS system supports Touchscreen
connectivity (e.g. via USB).

H 2

HSEN7 Enobio The AsTeRICS system supports connectivity with the
Enobio System (wired or via ZigBee).

H 1, 2

Hardware Requirements for pluggable actuators

HACT1 Mobile Phone
Interface

The AsTeRICS system supports integration with Mobile
Phone Interface via Bluetooth wireless link

H 2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 16

HACT2 LC-Display
Interface

The AsTeRICS system should support integration with an
LCD interface (e.g a USB-pluggable LCD with
touchscreen)

H 1, 2

HACT3 IR Connectivity The AsTeRICS system should support infrared
connectivity by interfacing to a suitable IR gateway

H 2

HACT4 Digital to Analog
Converter
(DAC-CIM)

The AsTeRICS system provides a Digital-to-Anolog
Converter module (DAC-CIM) with 5 channels (minimum)
between 0 and to 25 Volt. At least 2 channels provide
high power up to 5 Watts

M 2

HACT5 HID Mouse
Actuator

The AsTeRICS system supports mouse emulation for a
PC via the USB HID device class

H 1, 2

HACT6 HID Keyboard
Actuator

The AsTeRICS system supports keyboard emulation for a
PC via the USB HID device class

M 2

HACT7 HID Joystick
Actuator

The AsTeRICS system supports Joystick emulation for a
PC via the USB HID device class

H 2

HACT8 KNX-easy The AsTeRICS System supports integration with KNX-
easy

H 2

Hardware Requirements for Non-Classical PC-User Interfaces

HNCPUI1 3D
accelerometers

The AsTeRICS system supports connectivity with 3D
accelerometers

H 2

HNCPUI2 Webcam as Face
Mouse

The AsTeRICS system should support connectivity with
webcams that serve as face mice

L 2

HNCPUI3 Webcam for
other input
modalities (e.g.
colour tracking)

The AsTeRICS system should support connectivity with
webcams that serve as other input modalities

L 2

HNCPUI4 External
Touchpad/keypa
d (used in novel
ways, e.g. in
“Joystick” mode)

The AsTeRICS system supports connectivity with
Touchpad / Keypad that can be used in novel ways for
PC-User interfacing

H 2

HNCPUI5 GamePads/
Joysticks

The AsTeRICS system supports connectivity with
GamePads/Joysticks

M 2

HNCPUI6 Mobile phone
with touch screen

The AsTeRICS system supports connectivity with Mobile
Phones with touch screens

M 2

Table 2: Hardware requirements for the AsTeRICS pluggable components

2.1.3 Hardware Requirements for the AsTeRICS Smart Vision Module

The table below lists the requirements expected to be provided by the Smart Vision Module

which is going to be developed during the project.

Nr. Requirement Description Priority Prototype

SVM1 Eye camera The Smart Vision Module should acquire images from an
eye camera and process them

H 1,2

SVM2 Scene camera The Smart Vision Module should acquire images from a
scene camera and process them

H 1,2

SVM3 Inertial
Measurement
Unit

The Smart Vision Module should acquire data from an
IMU and process them

M 2

SVM4 Synchronization
interface

The Smart Vision Module should synchronize the data of
the eye and scene cameras and the IMU

H 1,2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 17

SVM5 Head-mounted
support

The head-mounted system of the Smart Vision Module
should be lightweight and intrusiveness should be
minimized

H 1,2

SVM6 Ewe detection An eye detection algorithm should be proposed/modified
and implented

H 1,2

SVM7 Gaze estimation A gaze estimation algorithm should be proposed/modified
and implemented

H 1,2

Table 3: Hardware requirements for the AsTeRICS Smart Vision Module

2.2 Software Requirements

2.2.1 Software Requirements for Pluggable Component Modules

The table below lists the software requirements for pluggable components (software plugins),

such as sensor-plugins, processor-plugins and actuator-plugins that the AsTeRICS system is

expected to support by default. Each hardware requirement in Section 2.1.2 should have a

counterpart software requirement in the table below. In addition requirements for purely

software components are listed below.

Nr. Requirement Description Priority Prototype

Software Requirements for sensor plugins

SSEN1 GPIO/ Generic
switches plugin

A software plugin exists which makes the state of the
external generic switches available on its output ports.

H 1,2

SSEN2 Sweety! plugin A software plugin exists which makes the state of the
Sweety! – buttons (connected via Bluetooth) available
on its output ports.

L 2

SSEN3

USB HID class
support

The operating system of the AsTeRICS Embedded
Platform supports USB devices classes and HID host
functionality to connect mice, keyboards and
joysticks.

H 1, 2

SSEN4 9 DOF Razor IMU
plugin

A software plugin exists which provides data from the
9 DOF Razor Inertial Measurement Unit.

H 1, 2

SSEN5 ADC/Strain Gauge
plugin

A software plugin exists which provides ADC data
from the ADC CIM (provide e.g. Strain Gauge data).

H 1, 2

SSEN6 Touch-screen The AsTeRICS system and/or the operating system of
the EP supports touchscreen connectivity.

H 2

SSEN7 Enobio A software plugin exists, which supports channel data
readout of the Enobio system.

H 1, 2

SSEN8 FTDI chip driver In case a USB2.0 connection to the Enobio system is
used, the FTDI driver has to be available in the
operating system.

H 1,2

SSEN9 IEEE 802.15.4
antenna driver

In case a built-in wireless receiver is used, its
software driver shall be available for the Enobio
software control.

M 2

SSEN10 Serial port driver The operating system allows access to the serial port
/ virtual COM port to provide wired connections to
UART/RS232 devices.

M 1,2

Software Requirements for actuator plugins

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 18

SACT1
Mobile Phone
Interface plugin

A software plugin exists which supports integration of
one or more mobile phones (send SMS, call a
number).

H 2

SACT2
LC-Display Interface
support

The AsTeRICS system and/or the operating system of
the EP supports integration of a portable LCD module
with touchscreen.

H 1, 2

SACT3 IR Connectivity
plugin

A software plugin exists which supports interfacing
with a suitable infrared gateway.

H 2

SACT4 Digital to Analog
Converter plugin

A software plugin exists which can control the Digital-
to-Analogue converter module (DAC CIM).

M 2

SACT5 HID Mouse Actuator
plugin

A software plugin exists which supports mouse
emulation for the PC via the HID mouse actuator.

H 1, 2

SACT6 HID Keyboard
Actuator plugin

A software plugin exists which supports keyboard
emulation for the PC via the HID keyboard actuator.

M 2

SACT7 HID Joystick
Actuator plugin

A software plugin exists which supports joystick
emulation for the PC via the HID joystick actuator.

H 2

SACT8 KNX-easy The AsTeRICS System supports integration with
KNX-easy.

H 1, 2

Software Requirements for signal processing plugins

SPROC1 Filtering EMG
signal: 8-500 Hz

Frequency filtering to be applied to ENOBIO channels
shall be implemented.

H 1

SPROC2 Filtering Alpha
band and Mu
Rhythm: 8-12Hz

Frequency filtering to be applied to ENOBIO channels
shall be implemented.

H 1

SPROC3 Filtering Beta
band: 12-30 Hz

Frequency filtering to be applied to ENOBIO channels
shall be implemented.

H 1

SPROC4 High pass filter
with frequency cut
at 1 Hz

Frequency filtering to be applied to ENOBIO channels
shall be implemented.

H 1

SPROC5 Laplacian filter
analysis

The feasibility and usefulness of Spatial Laplacian
filter for the reduced number of ENOBIO channels
shall be analyzed.

L 2

SPROC6 FFT computation Computation of Power Spectrum Density through
FFT.

H 1

SPROC7 Epoch cutting Epoch cutting. H 1

SPROC8 Epoch Averaging Epoch Averaging. H 1

SPROC9 Linear
Transformation

Linear Transformation (matrix product). H 1

Transformation matrix will be defined offline (this will
allow online ICA, PCA, CSP, linear inverse solution,
weighted mapping, CAR referencing, simple
Laplacian, etc…).

M 2

SPROC10 Threshold Application of a threshold to transform continuous
output into a binary output.

H 1

SPROC11 Derivative Derivative of some selected channels. H 1

SPROC12 Decimation Decimation of some selected channels. H 1

SPROC13 Dissimilarity Dissimilarity. H 1

SPROC14 PCA projection PCA projection (projection matrix can be pre-
computed).

H 2

SPROC15 CSP and OVR CSP and OVR. L 2

SPROC16 CVT CVT. L 2

SPROC17 SVEM SVEM (Support Vector Machine). M 2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 19

SPROC18 LDA LDA. M 2

SPROC19 Fuzzy C-means Fuzzy C-means. M 2

SPROC20 Cross Correlation Correlation function for template matching. H 1

Software Requirements for BNCI signal processing plugins

SBPROC1 Teeth grinding
detection

The output will be a numerical value within a range. H 2

SBPROC2 Frown detection Frown detection to be analyzed. The output will be a
numerical value within a range.

M 2

SBPROC3 Blink detection Blink detection. The output will be binary. H 1

SBPROC4 Double blink
detection

Double blink detection to be analyzed. H 1

SBPROC5 Horizontal eye
movement’s
detection

Horizontal eye movement’s detection. The output will
be single events (right/left).

M 2

SBPROC6 Winks detection Winks detection to be analyzed. M 2

SBPROC7 Mouth movement Mouth movement detection to be analyzed. M 2

SBPROC8 Emotional content Emotional content mentioned by Damasio 2003 [5] to
be analyzed.

L 2

SBPROC9 Motor imagery Motor imagery to be analyzed for binary. M 2

SBPROC10 Detection of
language thinking

Detection of language thinking to be analyzed for
binary.

L 2

Table 4: Software requirements for the AsTeRICS pluggable components

The Requirements from SPROC1 to SPROC20 are extracted from the SoA review on EEG,

EOG and EMG based assistive technologies and Report on Pattern Recognition

Technologies for BNCI. The purpose of the signal processing functionality set to be

integrated in the ARE is online process of different physiological signals to build assistive

technologies.

With regard to the Software Requirements for Signal Processing (SPROC1-20) and BNCI

Signal Processing (SBPROC1-9), only the one of medium or high priority will be

implemented either in prototype 1 or 2, leaving the implementation of low priority ones for the

case that enough resources are available. For the prototype 1, functionalities of high

feasibility attached to this prototype will be implemented, since its feasibility seems to be

ensured. In case of medium level of feasibility, a feasibility study of the corresponding

algorithms will be undertaken during the prototype 1 implementation phase in order to decide

on its implementation for prototype 2.

2.2.2 Software Requirements for the AsTeRICS Runtime Environment

The AsTeRICS Runtime Environment provides the execution framework for the pluggable

components and supports the ASAPI communications. For more details on the ARE

specification please see Section 4.2. The table below lists the identified requirements for the

ARE.

Nr. Requirement Description Priority Prototype

ARE1 Support sensor
plugins

The ARE supports Sensing modules which provide
information via output ports.

H 1,2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 20

For low level sensors that need OS/driver
communication we should use JNI for communicating
data to ARE.

ARE2 Support processor
plugins

The ARE supports processing elements which
transform information from input ports and provide
results on output ports.

H 1, 2

ARE3 Support actuator
plugins

The ARE supports actuator elements, using information
from input ports that might be connected to the output
port of a sensor or processor plugin.
May interface to operating system / driver layer via JNI.

H 1, 2

ARE4 Dynamic deploy,
activation,
deactivation and
removal of
components

ARE supports dynamic deploy, activation, deactivation
and removal of elements. ARE should be build upon
OSGi / Java to enable this feature.

H 1, 2

ARE5 Remote access to
the platform

The ARE supports remote access to the platform via a
communication network.

H 1, 2

ARE6 Feedback and
error reporting

The ARE supports querying deployed components
status and error reporting.

M 2

ARE7 Load / store
configuration on
platform

The ARE supports loading an existing configuration
system model and storing a new or changed
configuration system model from/to a hard disk.

M 2

ARE8 Computing load
can be monitored

The ARE should be capable of monitoring the system
computing load.

L 2

ARE9 Direct manipulation
of pluggable
components

The ARE allows setting and manipulating element
properties directly (not through model submission)
through a communication network or other direct
interaction with the ARE (buttons, touch screen, etc).

M 2

Requirements for signal connections and data flow within the ARE

ARE10 Data types on
Input / Output ports

Each Input and Output port attached on a component
have a specific data type. Supported data types include
boolean, int, longint, real (float), int-vector, float-vector,
string, state; while new data types for new elements
should be possible.

H 1, 2

ARE11 Restricted
connections

Connections (channels) can only be established from
one output port to one or many input ports of the same
type. Only matching connections can be established,
also it is not possible to connect more than one signal
to an input port.

H 1, 2

ARE12 Metadata on ports Each port can be connected with some type of
metadata about its capabilities, data type, signal
bandwidth, block size, timestamp, etc.

H 1, 2

ARE13 Data flow Data can be transferred via channels (from output to
input ports) as single values or in blocks (data chunks).

H 1, 2

ARE14 Channel update
rate

The update rate of a channel is defined by the
metadata of the output port. This rate can be fixed or
changed according to the output port activity.

M 2

ARE15 Synchronous and
Asynchronous
events reaction

Components are able to listen to Synchronous or
Asynchronous events (through ARE) and react
accordingly.

H 1, 2

Table 5: Software requirements for the AsTeRICS Runtime Environment (ARE)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 21

2.2.3 Requirements for the AsTeRICS Configuration Suite

The AsTeRICS Configuration Suite (ACS) is mainly used to graphically design the layout of

the system, as a network of interconnected components. ACS should also support the

deployment of additional components, such as an oscilloscope for monitoring the ARE

behaviour. A full specification of the ACS is given in Section 4.3

Nr. Requirement Description Priority Prototype

ACS1 Graphically design
system model

ACS enables graphical design of the system model on
a host PC as a network of components. Arrangement of
the graphical elements as well as properties
configurations should be enabled via mouse / keyboard
actions.

H 1, 2

ACS2 Graphically
interconnect
elements

The ACS GUI allows for connecting two components
through their output/input ports.
Drawing of connections (channels) from output to input
port defines data flow, channel and port parameters
should be adjustable.

H 1, 2

ACS3 User-friendly
graphical user
interface

The Configuration Suite provides a user friendly and
accessible graphical user interface. It is important that
usage of the ACS is as easy and accessible as
possible.

H 2

ACS4 Support connection
with the ARE

The ACS is able to connect to the ARE the ASAPI. The
connection should be used to download or upload the
system model, changing plugin parameters and logging
reports.

H 1, 2

ACS5 Components can
be grouped and
ungrouped in the
graphical display

To handle complexity of larger designs, components
can be grouped and ungrouped in the graphical display.

L 2

ACS6 Edit properties Display and edit properties and metadata information
on components and ports.

H 1

Table 6: Requirements of the AsTeRICS Configuration Suite

2.2.4 Requirements for the AsTeRICS Application Programming Interface
(ASAPI)

The AsTeRICS Application Programming Interface (ASAPI) provides a well defined method

for software applications like the AsTeRICS Configurations Suite (ACS) or third party

applications to configure, monitor and control the AsTeRICS Runtime Environment (ARE).

Section 4.4 provides detailed specification of ASAPI. The table below collects the

requirements for the AsTeRICS application programming interface (ASAPI).

Nr. Requirement Description Priority Prototype

ASAPI1 Detection of ARE ASAPI provides methods for detecting an instance of
ARE server.

H 1, 2

ASAPI2 Connection with
ARE

ASAPI provides methods for establishing a connection
with a detected ARE server.

H 1, 2

ASAPI3 Handle
communication
errors

ASAPI provides methods for handling ARE
communication errors and breakdowns.

M 1, 2

ASAPI4 Query installed
plugins

ASAPI provides methods for querying plugins installed
in ARE directly (i.e, without retrieving the whole system

H 1, 2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 22

model). Queries should return plugins’ parameters and
properties.

ASAPI5 Install plugin ASAPI provides methods to install plugins to the ARE. H 1, 2

ASAPI6 Create plugin
instance

ASAPI provides methods for creating new instance of
installed plugin.

M 1, 2

ASAPI7 Ports connection ASAPI provides methods for interconnecting installed
plugins.

H 1, 2

ASAPI8 Run/Stop plugins ASAPI provides methods for starting or stopping
individual plugins.

M 1, 2

ASAPI9 Retrieve system
model

ASAPI provides methods for retrieving the system
configuration model in a serializable format.

H 1, 2

ASAPI10 Deploy system
model

ASAPI provides methods for deploying a new
configuration system model.

H 1, 2

ASAPI11 Run/Stop
deployed model

ASAPI provides methods for initiating or terminating the
execution of deployed model.

H 1, 2

ASAPI12 Retrieve logging
information

ASAPI provides functions for retrieving logging. and
status information from the runtime environment.

M 1, 2

ASAPI13 Exchange live
data

ASAPI provides methods for exchanging live data with
connected ARE.

H 2

ASAPI14 Native Interface Certain functions are provided natively (in C#) for PC
AT developers via the Native ASAPI (e.g. for making
mobile phones or special sensors available).

M 1,2

Table 7: AsTeRICS Application Programming Interface (ASAPI) requirements

2.3 BNCI Evaluation Suite Requirements

The table below lists the requirements for the BNCI Evaluation Suite. The requirements table

is divided into functional and other requirements. They present priorities and feasibility of the

requirements as established.

Nr. Description Feasibility Priority Prototype

BNCI Evaluation Suite Functional Requirements

BNCI1 BNCI Evaluation Suite shall not work in real-time.

H H 1, 2

BNCI2 Recalling parameters for real-time on-line processing
might be allowed.

M M 2

BNCI3 The input file data formats will be the standard ones
used by the acquisition hardware.

H H 1

BNCI4 Data formats used by BIOSIG toolbox [33] shall be
accessed from the Evaluation Suite.

H H 1

BNCI5 Starlab data cube (SDC) format shall be used.

H H 1, 2

BNCI6 Classification functionalities of the BIOSIG toolbox
shall be interfaced from the Evaluation Suite.

H H 1

BNCI7 Temporal windowing of trial sequences shall be
implemented.

H H 1

BNCI8 Temporal 8-order Chebyshev Type I band-pass
filtering of trial sequences shall be implemented.

H H 1

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 23

BNCI9 Different projection techniques for dimensionality
reduction shall be implemented.

H H 1

BNCI10 A decision tree methodology might be implemented.

M M 2

BNCI11 Re-sampling training functionalities might be
implemented.

H M 2

BNCI12 Data fusion operators shall be implemented for
integration in classifier ensemble methodologies.

H H 1

BNCI13 Genetic algorithms might be implemented for system
optimization.

H M 1

BNCI14 A fuzzy control algorithm shall be implemented.

H M 2

BNCI15 Feature extraction based on Bereitschaft potential
shall be implemented

H H 2

BNCI16 PSD estimation based on multitaper approaches shall
be implemented.

H H 2

BNCI17 An approach based on mutual information ranking
shall be implemented for feature selection.

M H 2

BNCI18 SVEM shall be implemented.

H H 1

BNCI19 Linear proximal SVEM shall be implemented.

M H 1

BNCI20 A logistic regression algorithm shall be implemented.

M L 1

BNCI21 Linear discriminant analysis shall be implemented.

H H 1

BNCI22 Temporal decimation of trial sequences shall be
implemented.

H H 1

BNCI23 Temporal averaging of trial sequences shall be
implemented.

H H 1

BNCI24 Performance evaluation shall be implemented based
on TPR and CA measures.

H H 1

BNCI25 Wavelet transformation of a temporal sequence shall
be implemented.

M H 1

BNCI26 A procedure for analysis of variance (ANOVA) shall be
implemented.

H M 1

BNCI27 At least one performance measures for BCI shall be
implemented, e.g. kappa, TPR/FPR, ITR.

H H 1

BNCI28 Recall parameters of a particular framework might be
saved on disk for posterior on-line processing.

L M 2

BNCI29 An application based on P300 for image browsing
shall be implemented.

M H 1

BNCI30 P300 classical approach shall be implemented.

H H 1

BNCI31 Classical BCI based on motor imagery might be
implemented.

H L 2

BNCI32 An approach for single-trial source reconstruction for
BCI might be implemented.

M M 2

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 24

BNCI33 StarEEGlab [34] user interface shall apply.

H H 1

BNCI Evaluation Suite Other Requirements

BNCI34 BNCI Evaluation Suite shall be implemented in two
phases. Prototype 1 (PT1) to be delivered till
30/04/2011.

H H 1

BNCI35 BNCI Evaluation Suite shall be implemented in two
phases. Final Prorotype (FP) to be delivered till
31/05/2012.

H H 2

BNCI36 Starlab shall integrate the Evaluation Suite
functionalities within the StarEEGlab toolkit.

M H 2

Table 8: BNCI Evaluation Suite requirements

Requirements with High feasibility and High priority that are expected to be delivered in

Prototype 1 will be attained first. Then requirements of Medium feasibility and High priority for

Prototype 1 might be realized. For this, a feasibility study that confirms the feasibility should

be undertaken earlier.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 25

3 Hardware Specification and Architecture

The usual hardware configuration of the main system consists of the Embedded Computing

Platform and connected sensors and actuators via standard integrated interfaces or via

special Communication Interface Modules (CIMs). Thanks to the high modularity, the system

can be adapted to the user’s abilities and needs and mounted as desktop or portable system.

The key components of the HW platform will be designed to support both desktop and

portable variants as much as possible.

Figure 1: Concept of the modular Assistive Technology system

The architecture of the system is described in Figure 1. The personal platform contains core

computer described in chapter 3.1 and the core expansion module described in 3.2.1. When

the set of interfaces provided on the personal platform is not sufficient, more communication

modules specified in chapter 3.2 can be added and connected via USB interface to the

system. Custom sensor and actuator modules being developed in the project are then

described in the rest of chapter 3.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 26

3.1 Specification of the AsTeRICS Embedded Platform

For the first AsTeRICS system prototype, the State-of-the-Art analysis revealed some

interesting candidates for the Embedded Platform hardware (see D2.4, [3]). In course of the

system evaluation and performance tests performed in course of D4.7 – “Porting of OSGi to

the Personal Platform”, the Kontron 1,6Ghz Atom Single Board Computer (SBC) with pico-

ITX form factor [15] proved to be the best option due to the following reasons:

 The Atom platform features a low-power chipset and provides best-in-class

performance at a reasonable power dissipation

 The Kontron board features a robust design and rich connectivity

 All interesting operating systems are supported, including recent Windows and Linux

distributions

The Kontron pico-ITX SBC fulfills all hardware requirements for the AsTeRICS computing

platform (HW1-HW12) defined in section 2.1.1, except the interfaces for Bluetooth, ZigBee

and WiFi (HW8 and HW9), which will be provided by the Core Expansion Module (see

section 3.2.1).

In the following sections, basic specifications, connectivity and functional features of the

Kontron pico-ITX SBC will be described, including a measurement of the power consumption

of the board under various system loads.

3.1.1 Kontron pITX SBC - dimension and operating conditions

 The following table comprises general specifications of the Kontron 1.6 Ghz pico-ITX Single

Board Computer (SBC), as dimensions and operating conditions [15]:

Product Kontron pITX SBC

Dimensions (H x W) 100 x 72 mm (Pico-ITX)

Temperature Operating 0 °C – 60 °C (32 °F ~140 °F)

Temperature range 0 – 60 °C ambient temperature, active and passive cooling solutions available

Power Supply /
Consumption

5 V DC (5 W typical)

Table 9: Kontron pITX SBC dimension and operating conditions

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 27

Figure 2: Kontron pITX SP Single Board Computer, top and bottom view

3.1.2 Kontron pITX SBC - Functional Specifications

The following table lists the functional specifications of the Kontron pico-ITX Single Board

Computer [15]:

Processor Intel Atom Z510 (1.1 GHz) or Z530 (1.6 GHz) with 24 kB data and 32 kB instruction L1
cache and 256/512 kB L2 cache

Chipset Intel US15W (Poulsbo) - 400/533 MHz Front Side Bus (FSB), One DDR2-400 / DDR2-
533 unbuffered DDR-SDRAM (SODIMM form factor) up to 2 G

Graphic controller Integrated Intel GMA500 graphic controller with dual independent display support,
supports Ultra DMA (UDMA5), onchip Video Graphics Array (VGA), hardware
acceleration of following video decode standards: H.264, MPEG2, MPEG4, VC1 and
WMV9

Audio controller Integrated Intel® High Definition audio controller (HD audio) with line in/out, mic in and
digital audio output

USB support Onchip Universal Serial Bus: Six ports are capable to handle USB 1.1 (UHCI) and USB
2.0 (EHCI), one port alternatively supports USB client functionality as a peripheral mass
storage volume or RNDIS device

Ethernet-support Gigabit LAN (PCI Express): Intel 82574L, full duplex operation at 10/100/1000 Mbps

Mass storage
support

Serial-ATA (PCI Express): JMicron JMB362
Two Secure Digital I/O / MultiMedia Card (SDIO/MMC) controllers, onchip Secure Digital
I/O / Multimedia Card (SDIO/MMC), fully compliant with SDIO revision 1.1 and MMC
revision 4.0

Other Interfaces Two PCI Express ports (x1 lanes)
Low Voltage Differential Signaling (LVDS) flatpanel interface supports single clock
Digital I/O (CPLD): four inputs and four outputs, +3.3V signal level

Temperature
monitoring

One onchip thermal sensor and one remote temperature sensor (CPU), SMBus
Winbond W83L771W

BIOS AMI Bios, 1 MB Flash BIOS

Realtime Clock Supported, requires external battery

Table 10: Kontron pITX SBC functional specifications

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 28

3.1.3 Block Diagram

The following figure shows a block diagram of the functional elements of the Kontron pico-

ITX Single Board Computer (SBC) and depicts the onboard connectors for connectivity of

peripheral units [15]:

Figure 3: Kontron pITX SP embedded computing platform, block diagram

3.1.4 System setup and power requirements

For the evaluation of the hardware architecture and the feasibility tests performed in D4.7,

the following system setup for the Kontron pico-ITX SBC has been used:

Main board Kontron pITX SBC, 1,GHz, Atom CPU

RAM 1 GB SO-DIMM module, DDR2 RAM

Mass storage 64 GB Kingston “SSD-now” series Solid State Disk drive, 2.5”,
connected via S-ATA

Peripherals USB-Keyboard, USB-Mouse, optional MIMO USB display with touchscreen

Network connection LAN, 1 GB Ethernet

Power supply External 12V DC adapter (60W),
internal micro ATX DC converters (12V, 5V, 3,3V)

Table 11: System setup for the Embedded Platform power requirement evaluation

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 29

Under normal load conditions, an average power consumption of about 10 Watts could be

measured using the setup shown in Table 11 . For details about power requirements and

measurements performed in different states and load conditions please refer to D4.7.

Optional LC Display with Touchscreen

As defined in the Description of Work [1] and in the hardware requirement section (see

2.1.1), a modular display solution for the AsTeRICS Embedded Platform is desired, because

some use cases may require a display and/or a touchscreen for user interaction, but others

may not. In the first prototype of the AsTeRICS system, a MIMO 720-S USB pluggable

display will be used as optional LC display with touchscreen [16]. The MIMO720-S features a

small screen with a dedicated graphics processor and touch functionality. A USB connection

is used for data transferring and doe display power supply. The included drivers can be

configured to use the MIMO as secondary or main display device in Windows operating

systems. The touchscreen driver emulates standard mouse functions.

The price of the MIMO 720-S is affordable (around 120€), and the power consumption is low

compared to display solutions of similar size and brightness. The following table shows the

specifications of the MIMO 720-S [16].

Figure 4: MIMO 720-S USB pluggable LC display with touchscreen

Display size 7 inch

Display resolution 800 x 480 pixel

Brightness 350 cd/m2

Contrast ratio 400:1

Connections USB 2.0

Dimensions 7" x 4.5" x 0.8"

Touchscreen resistive sensor

Monitor Pivot 90 degrees

Weight < 1 pound

Power requirements USB powered, < 500mA @ 5V (2,5 W)

additional features Integrated stand and cover

Table 12: Specifications of the MIMO 720-S USB pluggable LC display with touchscreen

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 30

3.2 Communication Interface Modules

Due to the fact that no embedded computing platform exists which provides all the needed

physical interfaces to connect the sensors and actuators listed in section 3.1, special

Communication Interface Modules (CIMs) will be designed.

Nr. Name Main purpose Provided Interface

CIM 1 Core expansion module Basic set of interfaces always attached to
the emmedded computing platform

More USB interfaces, GPIO,
UART, status display, WiFi,
BlueTooth, configurable user
buttons

CIM 2 Zigbee-CIM Enobio interfacing, remote switch interfacing Zigbee CIM

CIM 3 GPIO-CIM hotkeys and selection buttons of platform
user input (digital switches)
user output (custom control)

General purpose input and
output ports (digital input or
output) with ESD, overvoltage
and shortcut protection

CIM 4 ADC-CIM Read analogue values (strain gauge,
accelerometer)

Analog / digital conversion (e.g.
10bit resolution @ 256 Hz)

CIM 5 DAC-CIM Ouput of analog voltages, capability of
driving inductive loads (e.g. pneumatic
valves for the gripper module)

Digital / analog conversion 0-
25V, (optionally via separate
supply voltage), 5 ports, two of
them up to 5 Watts

Table 13: Hardware interfaces provided by Communication Interface Modules

3.2.1 Core Expansion Module

The chosen computing platform provides only limited basic set of interfaces like 6 USB ports,

Ethernet interface and LCD DVI output. There is no system bus for expansion therefore the

key component of the expansion module will be an USB hub with sufficient amount of USB

ports to integrate the following additional interfaces plus 7 USB interfaces available to

connect other CIM, sensor and actuator modules.

Next to the USB hub, the core expansion module will offer:

 8x GPIO Eight digital general purpose input and output pins will offer to integrate

e.g. few user configurable buttons and/or status LEDs directly in the core of the

AsTeRICS platform.

 2x UART Two serial ports could be used to directly connect or even integrate e.g.

the Zigbee-CIM or another CIM/sensor/actuator via UART interface.

 WiFi One of the requirements is to provide at least 802.11b wireless network

interface for wireless connection from the AsTeRICS configuration suite,

 BlueTooth Some sensors like Sweety! Switches or actuators like mobile phone

need BlueTooth connectivity.

 Status Display Many AsTeRICS installations will be without any LCD display. It

will be nice if a small one or two text lines or narrow graphical status display in the

core box will show the current status of the system.

3.2.2 Zigbee-CIM

The IEEE 802.15.4 ZigBee CIM is necessary if user wants to connect the Enobio device

wirelessly. Also other functionality could be implemented in future like e.g. a remote light

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 31

switch. The ZigBee CIM will be connected via USB or UART interface. There is also a

chance to integrate this interface directly in the core expansion module.

3.2.3 GPIO-CIM

A basic set of 8 digital general purpose input and output pins will be available directly in the

core expansion module but more can be needed. Therefore an expansion module with

another 8 (16) input and 8 (16) output pins will be developed. A standard

ESD/shortcut/overvoltage protection will be on all I/O pins. The output pins should offer at

least open-collector and programmable 5V pullup function. Optionally also relays could be

assembled on this board.

3.2.4 ADC-CIM

Some sensors provide analogue voltage, current output or other electrical value like strain

gauge or analogue accelerometer. To connect such sensors a universal analogue-to-digital

converter module is needed. For the strain gauge also an in-built excitation source will be

necessary. The accuracy and maximum frequency needed for these sensors are not so high;

therefore a standard 10/12 bit ADC with sampling frequency above 1 kHz should be

sufficient. The module will provide 4 channels with basic range 0-5 V adjustable via

configurable dividers.

3.2.5 DAC-CIM

To control an actuator with analogue interface a digital-to-analog converter CIM is needed.

The developed DAC CIM will offer five 0-25V analog voltage outputs. If external power

supply is connected, two of them will provide also programmable current limit up to at least 5

Watts each.

Note: The GPIO, ADC and DAC CIMs will be probably integrated together on one common

PCB board. Then two variants will be manufactured – one cheaper with GPIO only, one with

full GPIO/ADC/DAC set. This will be defined by the components assembled on board and the

internal firmware.

3.3 Custom Sensor and Actuator Modules

3.3.1 Universal HID Actuator

The Universal Human Interface Device (HID) actuator is a microcontroller-based peripheral

device developed in course of the AsTeRICS project, which connects to a PC (laptop-,

netbook or desktop computer) via a standard USB interface. The Universal HID actuator is

capable of emulating different standard user interaction devices (mouse, keyboard and

joystick) without additional driver-installation on the PC, given that the operating system

supports the standard USB Human Interface Device classes (HID-classes). This is true for

every modern operating system including different Windows versions and Linux distributions.

The purpose of the Universal HID actuator in terms of accessibility is that the AsTeRICS

Embedded Platform can generate mouse, keyboard or joystick control commands out of

various sensor data, and the Universal HID actuator emulates the desired PC input device.

Thus, a mapping of (pre-processed) sensor data to different standard Human Computer

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 32

Interaction devices can be performed. Furthermore, dedicated Assistive Software products

can use AsTeRICS sensor information via a standard and well supported process, e.g. by

using API calls of the operating system to get joystick button states or –positions.

In the first AsTeRICS prototype, the Universal HID actuator will be interfaced by a wired

connection, where the second AsTeRICS prototype will provide a wireless connection to the

HID actuator dongle, which then plugs into the USB port of the PC like a commercial off-the-

shelf USB memory stick.

As a hardware platform for the HID emulation, a suitable USB-capable 8-bit microcontroller

will be chosen from the available products which have been described in D2.4 [3]. Most

probably, the PIC Low-Pincount USB Development Kit or the Atmel USB-Key will be used as

suitable development platform. For the second Prototype, a custom PCB including the

microcontroller and a wireless solution will be developed.

The following table shows features of the Universal HID actuator in the different development

stages of PT1 and PT2:

HID actuator feature Prototype – 1 Prototype -2

Mouse emulation via USB HID class available available

Keyboard emulation via USB HID class - available

Joystick emulation via USB HID class available available

Connection to AsTeRICS Embedded Platform wired
e.g. via RS232/UART

wireless
e.g. via Bluetooth or
ZigBee

Concurrent use of different HID classes no yes

Table 14: Features of the Universal HID actuator module at different design stages

In a particular AsTeRICS configuration, the desired function of the Universal HID actuator is

defined in the AsTeRICS Configuration Suite by selecting the according emulator SW-plugin.

This selection affects the firmware configuration of the HID emulator dongle when the model

is deployed to the runtime system. Figure 5 illustrates this process in a setup where the

joystick firmware profile is activated by a deployed joystick actuator plugin:

Universal HID emulator

HW dongle

(microcontroller)

CIM

ARE
(running different

SW-plugins)

Joystick

actuator

plugin

Plugin

X

Plugin

Y

Mouse firmware profile

Joystick firmware profile

Keyboard firmware profile

Figure 5: Firmware profile selection for desired HID device

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 33

The Universal HID actuator module can be used in various user interaction tasks and

modalities. The following diagram shows three different use cases including the HID actuator

wireless version (Prototype 2):

Joystick

Emulator
wireless link

Universal Human

Interface Device (HID)

actuator

AsTeRICS

Mouse

EmulatorAcceleration Sensor or

Inertial Measeurement

Unit used for Computer

Mouse Control

Use Case 1: CIM

wireless link

Universal Human

Interface Device (HID)

actuator

AsTeRICS

CIM

SVM

Eye Movements detected by

Smart Vision Module generate

joystick input on a Laptop

Use Case 2:

Smart Vision

Camera Module

AsTeRICS
EEG (BCI), EMG or EOG

used to generate Keyboard

input on a PC

Use Case 3: Enobio-EEG

ZigBee

wireless link

CIM

Keyboard

Emulator

Universal Human

Interface Device (HID)

actuator

Figure 6: Use cases including the Universal HID actuator

3.3.2 Generic Switches

A small set of generic switches shall be integrated with few status LEDs and GPIO CIM into

one box. If a custom designed switch is not needed, this can reduce the size of the

AsTeRICS system.

3.3.3 Accelerometer

3-axis, ultralow power accelerometer sensor ADXL345 attached to USB port will be provided.

The accelerometer has I2C and SPI digital interface but if possible, not only the USB-I2C

converter but also joystick/pointing device emulation will be supported in the hardware.

The used ADXL345 sensor provides user selectable measurement ranges up to ±16 g. It

measures both dynamic acceleration resulting from motion or shock and static acceleration,

such as gravity in all three axes while consuming 23 A in measurement mode and only

0.1 A in standby.

3.3.4 Strain Gauge

A strain gauge sensor will be prototyped or integrated with the ADC or ADC/DAC CIM to test

the functionality. The pressure or tension translated to the resistivity difference of the sensor

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 34

will be measured by the CIM module and sent to the platform for further processing. If the

accuracy of the ADC used in ADC(/DAC) CIM is not sufficient then it can be improved in

PT2.

3.3.5 Pneumatic Gripper actuator

The Pneumatic Gripper actuator provides functionalities for grabbing (tiny) objects. For this a

lightweight pneumatic gripper (FIPA GR04.090) is used which can be mounted on a

mouthstick (see Figure 7).

Figure 7: Mouthstick equipped with pneumatic gripper FIPA GR04.090

The gripper itself is controlled by a 3 port solenoid valve (SMC V114 SLOU) which is

controlled by the GPIO-CIM or the DAC-CIM.

To support two gripping forces a separate pressure regulator (SMC AR10) and a further 3

port solenoid valve (SMC V114 SLOU) is used. Also this solenoid valve is controlled by the

GPIO-CIM or the DAC-CIM.

As source of compressed air an air compressor or scuba diving equipment (compressed air

cylinder with single valve and 1st stage regulator) can be used (see Figure 8).

3 3

22

11

Scuba Diving

Cylinder
1.5 Litre 232bar

Scuba Diving

1
st
 Stage Regulator

8-10bar

SMC AR10

(Low Pressure)

SMC V114 SLOU

FIPA GR04.090

Gripper

SMC V114 SLOUSMC AR10

(High Pressure)

Controlled by

GPIO-CIM or

DAC-CIM

SMC AN120

Scuba Diving

Single Valve

SMC G27-10SMC G27-10

Compressed Air Source

Controlled by

GPIO-CIM or

DAC-CIM

Figure 8: Pneumatic Scheme of the gripper actuator

Specification of the SMC V114 SLOU 3 port solenoid valve:

Operating Pressure: 0 to 0.7 MPa

Flow Characteristics 12: 0.037 dm³/(s bar); 23: 0.054 dm³/(s bar)

Coil related voltage DC 5V

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 35

Power consumtion 0.35W

Table 15: Main Characteristics of the SMC V114 SLOU

3.4 Smart Vision Module

3.4.1 Smart Vision Module (SVM) Concept

The Smart Vision Module (SVM) is one of the two multi-purpose input modules (BCI

Evaluation Suite being the other one) that will be developed during WP3 and WP4 and

integrated in the AsTeRICS system. The Smart Vision Module will be essentially based on

image processing and computer vision algorithms in order to provide means of video-based

interaction for AT purposes. Within AsTeRICS project, the SVM will be limited to the study

and the implementation of a gaze interaction system.

Based upon an analysis of the state-of-the-art eye-gaze trackers (cf. deliverable D2.4 [3]) in

conjunction with user requirements (cf. WP1, especially D1.1 and D1.3), the SVM adequate

functions were defined. The goal of the Smart Vision Module will be twofold (cf. Figure 9).

Indeed, two types of eye-gaze trackers will be built within the project in order to answer to

different needs of AsTeRICS project targeted end-users.

Figure 9: Smart Vision Module functions

Improved existing and original algorithms for gaze detection and tracking, and software will

be designed and tested in real scenarios (as defined in WP1). A brief overview of new

existing eye and gaze tracking approaches is given in [24].

An open-source and scalable software framework will be created. Consequently, it will be

possible to extend the initial library of eye-based man-environment interactions to

interactions with any part of human body (head, nose, finger, shoulder & elbow, etc.).

3.4.2 SVM Overview

Two prototypes of video-based eye-gaze tracker will be designed and built: remote and

head-mounted, both in charge of estimation of the gazed 3D point (point-of-regard, PoR).

Why two eye-gaze trackers? Because remote and head-mounted eye-gaze trackers have

their own advantages and drawbacks and end-users have different needs for interaction (a

particular configuration might be better adapted to certain kinds of disabilities).

The remote eye-gaze tracker is a non-intrusive solution and offers reasonable accuracy for

pointing (selection) operation. Its realisation is a challenge, as several complex constraints,

such as head movements, prior geometry information, camera-screen referentials,

calibration, illumination invariance, etc., must be conveniently solved.

The head-mounted eye-gaze tracker is more intrusive, but is proved to be more accurate

than a remote eye-gaze tracker (typically 1° of visual angle or better) and have the

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 36

advantage of fixed camera-to-head displacements which allows for larger head movements

(a camera-head transition matrix is known).

For both solutions, the goal will be to perform mouse emulation thanks to gaze. By mouse

emulation, one means that it is possible to do mouse displacements and mouse clicks (via

dwelling time).

3.4.2.1 SVM First Prototype (PT1)

Remote eye-gaze tracker

The remote eye-gaze tracker will consist of a digital camera and a personal computer (cf.

Figure 10). The choice of the camera will depend on different parameters such as the

accuracy (web cameras have low resolution), the position of the camera according to the one

of the computer screen, etc. The final architecture will be selected after experimental

evaluation in typical scenes.

The camera will be in charge of capturing images from the head of the user. Then, the head

and the eyes will be detected via image processing and finally, the gaze will be estimated.

Figure 10: Remote eye-gaze tracker scheme

Head-mounted eye-gaze tracker

The head-mounted eye-gaze tracker will be built around two digital cameras, eye and scene

cameras, an inertial measurement unit (IMU) and a personal computer (cf. Figure 11).

The eye (respectively scene) camera will be in charge of capturing images of the eye

(respectively computer screen). The inertial measurement unit will provide acceleration and

rotation rate measurements of the camera (and thus, the head).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 37

Figure 11: Head-mounted eye-gaze tracker scheme

The proposed head-mounted eye-gaze tracker is also designed with the intention that it can

be used for other (future) applications. For example, this design could be seen as a first step

toward mobile eye tracking and hence, well-suited for 3D environment interaction (which is a

challenging and interesting topic not only in assistive technology).

3.4.2.2 SVM Final Prototype (PT2)

After an evaluation test of the first prototype (PT1), the proposed remote and head-mounted

systems will be improved. Improvements of two types will be made: functional and

performance, and will lead to both software and hardware modifications (if necessary).

In addition, to improve the performances of the eye-gaze trackers, the final prototype will

allow using a virtual keyboard and/or menu-buttons displayed on computer screen to give

user ability of entering text or menu-based interaction. Moreover, it will give the possibility to

compare the accuracy of the different types of eye-gaze trackers that will be built during the

project.

3.4.3 Remote Eye-Gaze Tracker: Hardware Design

The remote eye-gaze will be designed such that it can be easy to install, transport and use.

In designing a remote eye-gaze tracker, three main hardware issues have to be solved:

choice of the camera, prior geometry constraints, light sources (cf. Table 16).

Table 16: Remote eye-gaze tracker hardware issues

Hardware issues Purpose

Camera choice
To identify the face and the different eye
features (a large field of view is required)

Prior geometry
constraint(s)

To obtain the position of the camera relative to
the computer screen

Use of light sources To allow for head movements

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 38

3.4.4 Remote Eye-Gaze Tracker: Software Design

Gaze estimation principle

Remote eye-gaze trackers usually proceed in 3 main steps (cf. Figure 12) to compute the

point-of-regard (PoR): face detection, eyes detection and gaze estimation.

Figure 12: Remote eye-gaze tracker processing pipeline

The principle of remote eye-gaze tracking is described in Figure 13. First, a single camera

records images of the user and tries to detect his face. Once the face is detected, the system

attempts to localize the left and right eyes of the user. Then, in every eye window, eye

features are usually localized and their position computed.

Some available existing VOG (video-oculography) shape-based techniques (for fine eye

features detection) combined with appearance-based (for coarse face and eyes detection)

techniques will be evaluated in real scenarios in order to select the most appropriate one for

remote eye-gaze tracker. If necessary, these techniques will be adapted to our final

scenarios.

The main approaches for fine eye feature detection that will be investigated are those based

on the extraction of simple (iris, dark/bright pupil, limbus) or complex (eyelids, eye corners,

eyebrows, cornea reflections) eye characteristics using their models.

Figure 13: Remote eye-gaze tracker principle

To estimate the gaze in a remote configuration, two approaches exist: pupil-glint vector or

model-based. For the pupil-vector method, a mapping is computed between eye features,

namely the pupil-glint vector and the screen coordinates. The model-based method

estimates a gaze direction vector according to an eyeball model and computes the point-of-

regard (PoR) by intersecting the line supporting the gaze direction vector with an object in

the environment, usually a computer screen.

Tracking of both eyes allows improving the accuracy of the gaze estimation through the

formulation of the epipolar stereo geometry. However, if only one eye is detected, it is

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 39

possible to estimate the gaze, but to do so, the system must identify if the detected eye

corresponds to the left eye or the right eye.

The main contribution will be to design gaze estimation using image processing and vision

algorithms only.

3.4.5 Head-Mounted Eye-Gaze Tracker: Hardware Design

3.4.5.1 Hardware Architecture

The head-mounted system will be built around commercial-off-the-shelf (COTS) components

and will consist of the following sensors: an eye camera, a scene camera and an inertial

measurement unit (IMU)

In designing a head-mounted eye-gaze tracker, the main hardware issues that need to be

solved are listed in Table 17.

Table 17: Head-mounted eye-gaze tracker hardware issues

Head-mounted support

Most of existing head-mounted eye-gaze trackers are based on one of the following

configurations (cf. Figure 14): pair of glasses, headband-mounted solution or hybrid solution.

Pair of glasses (cf. Figure 14 a)): This configuration is not well-suited for persons wearing

glasses as they would be bothered by the arms of the head-mounted system. However, it

allows guaranteeing stability to the system thanks to a joining nose bridge. Low-cost pairs of

safety glasses could be used.

Headband-mounted solution (see Figure 14 b)): This configuration is well-suited for people

wearing glasses. However, large head movements will make the system less stable than an

eye-gaze tracker based on a pair of glasses.

Hybrid mounting for eye trackers (see Figure 14 c)): It is also possible to adopt a hybrid

configuration combining the advantages of both configurations described above by adding a

nose bridge to the headband configuration in order to overcome the problem of stability.

Hardware issues Purpose

Head-mounted support To mount and fix the eye-gaze tracker on the head

Synchronization/stabilization
To acquire data at the same instance and frame rate
(no delay) and to stabilize acquired images

Eye camera choice
To identify different eye features and perceive
sufficient details

Scene camera choice
To get a large view of the environment the user is
looking at

Use of a light source
To enhance the contrast between pupil and iris and
get a static eye reference point

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 40

 a) Pair of glasses [17] b) Headband-mounted [25] c) Hybrid [25]

Figure 14: Head-mounted supports

The main difficulties in building the head-mounted support are:

 to make it as lightweight as possible (so it can be supported during a long period of

time)

 to avoid obstructing the field of view of the user when mounting the eye camera.

Synchronization and stabilization

One of the main issues in eye-gaze tracking is the synchronization of the data acquired by

the different sensors (cameras and IMU). Indeed, synchronization refers to the proper

coordinate mapping of the eye tracker’s reference frame to the application responsible for

generating (and stabilization of) the visual stimulus that will be seen by the user [22].

In the literature [26], the most frequent solutions for multiple camera synchronization are the

following:

a) Special-purpose hardware: it usually requires a synchronization platform.

This solution allows delivering external synchronization signals in order to

trigger cameras. Camera manufacturers such as Point Grey Research Inc or

IDS imaging propose to synchronize the image acquisition of, respectively,

multiple firewire or USB cameras.

b) Post-processing synchronization algorithms: these methods usually work

on unsynchronized video sequences and estimate the temporal offset

between them. Some of them rely on tracking interest points and matching

them over time. The main drawback of post-processing algorithms is that they

cannot be applied in real-time and are sensitive to occlusions.

c) Software-based methods: most of the methods solve the problem of

synchronization by triggering cameras via software, by calculating the latency

or sending a start pulse of recordings, just to name a few. The drawback of

these methods is that they are designed for multi-camera network i.e. that

more than one computer is available.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 41

d) Network synchronization: this method works by interconnecting several

computers and creating a local area network (LAN) and applying a software-

based synchronization.

For AsTeRICS project, the special-purpose hardware approach will be adopted as it is the

only working solution to properly and precisely synchronize the cameras and the IMU. A USB

interface (cf. Figure 15) will be developed by IMA and will allow attaching two digital cameras

and an inertial measurement unit. The inertial data will be acquired in parallel and at the

same rate as these of the two cameras.

The result will be a platform that leverages the utility of USB to provide an efficient and

accessible means of interfacing custom video and inertial sensors with personal computers.

Figure 15: SVM Connections/Synchronisation scheme

3.4.5.2 Camera Modules

The choice of the two cameras for an eye-gaze tracker is essential to achieve good accuracy

and low latency. Two cameras have to be chosen from the market: an eye and a scene

camera. The features of both cameras are guided by the goal(s) of the application and

usually depend on what data they acquire. Main features of cameras which should be

considered are: sensor technology, chromaticity and sensitivity to light, resolution, field of

view and focal length, shutter type, camera interface.

Sensor technology - CMOS vs. CCD: Today’s cameras are built with one of the following

technologies:

- CMOS (complementary metal oxide semiconductor)

- CCD (charge coupled device) sensor

Both technologies have their own advantages and disadvantages. CMOS sensors tend to be

smaller than CCD sensor and consume less power, but they still generally require

companion chips to optimize image quality, increasing cost and reducing the advantage they

gain from low power consumption. However, both CMOS and CCD technology accomplish

the same tasks of capturing images with almost equal quality.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 42

Chromaticity and sensitivity to light: Depending on the chromaticity of the sensor, either

monochrome or colour, information on the image itself is different. Indeed, when using

monochrome cameras, only one luminance channel is available for processing the image

whereas colour cameras introduce 3 channels (Red, Green and Blue). Hence, upon the

information we acquire from the camera, processing can be different. Colour cameras are

well-suited for application where object detection/tracking is important because working in

different colour spaces can provide more details about the appearance of the object itself.

Moreover, the chromaticity of the sensor also influences the sensor sensitivity to light. In fact,

monochrome cameras are traditionally more sensitive than colour cameras. Sensitivity to

light plays an important role in environment with poor lighting conditions as it can provide

more clarity to the image.

Resolution: Resolution describes the quantity of details an image holds. Thus, the higher the

resolution is, the more details a camera can capture.

Field of view and focal length: The field of view (FOV) describes the area of vision of a given

scene acquired by the camera’s sensor and is directly linked to the focal length. There are

different types of FOV: super-telephoto (<1° to 8°), telephoto (10° to 15°), standard (25° to

50°), wide-angle (60° to 100°) or fisheye (up to 180°). Furthermore, the larger the FOV is, the

higher optical distortions, especially radial distortions, are. However, these distortions can be

corrected via image processing.

Shutter type: There are mainly two shutter types: global and rolling. Global shutter allows

acquiring a single snapshot at a fixed time. On the other hand, rolling shutters scan across

the frame and the scanned lines can be recorded at a different time. Hence, a rolling shutter

can introduce distortions (spatio-temporal aliasing) due to fast motion.

Camera interface: The camera interface allows transferring images from camera sensor to

the processing platform (such as a PC). Usually, the type of interface influences the physical

dimensions and weight of the camera itself.

Available cameras from the market are mainly using the following standard data interfaces:

USB, Firewire (IEEE1394), Composite, CamLink, and GigE. USB, firewire and composite

interfaced cameras are the most common cameras available from the market. Cameras with

composite video output offer the output signal of analogue type, usually deliver images of

poor quality and hence, would affect the image processing. CamLink and GigE interfaced

cameras are usually quite heavy and have high physical dimensions and thus, are not well-

suited for building a wearable device.

Weight and physical dimensions: A camera’s size and weight should be as small as possible,

still providing the desired image quality.

Cameras of current head-mounted eye-gaze trackers

In [19], Babcock et al. from the Rochester Institute of Technology (RIT) presented an eye

tracker using two analogue cameras and an infrared LED (cf. Figure 16). They used two

micro-lens cameras, namely the PC206XP (a black and white CMOS imager with 380 lines

of resolution) and the PC53XS (a colour CMOS imager) from the company SuperCircuits.

However, these inexpensive cameras provide low resolution images which is mainly due to

the analogue output video of the cameras.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 43

Figure 16: RIT cameras [19]

Based on the design of [19], Li et al. investigated various camera candidates for their

OpenEyes eye tracker in [17]. They mentioned that the analogue cameras they found were

quite expensive to use in eye tracking system, required AD converter or were not suitable for

mobile applications. Thus, they moved to digital cameras. They tried to find USB cameras,

but their bandwidth limited the resolution and the frame rates. Finally, they investigated

IEEE-1394 cameras and opted for the Unibrain Fire-I camera (cf. Figure 17). However, one

of their problems was to try to decrease the degree of noise when capturing the images and

these cameras are initially attached to a board (they had to detach the cameras from the

board). They concluded by mentioning that high resolution cameras would give more

accurate eye tracking and the use of higher speed cameras would be more suitable in

decreasing motion blur effect.

Figure 17: OpenEyes cameras [17]

In [18], Yun et al. chose two analogue cameras for their EyeSecret eye tracker (cf. Figure

18): the WAT-704R (a miniature monochrome analogue CCD imager) and the WAT-240 (a

miniature colour analogue CCD). However, they do not provide information about image

quality.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 44

Figure 18: EyeSecret cameras [18]

In [20], Ryan et al. pursued the open-source project “openEyes” [17] at Clemson University

and improved the algorithm in order to switch between pupil and limbus tracking under

variable lighting conditions. They replaced the openEyes cameras, PC206XP and PC53XS,

with the digital video minicams called Camwear Model 200 from DejaView and recorded

videos using MPEG-4 codec (cf. Figure 19). However, they also provide no details about

image quality.

Figure 19: Clemson eye tracker [20]

Interesting cameras for a head-mounted eye tracker

Some commercially available cameras are listed in Table 18 and Table 19. Due to the

synchronization constraint (cf. section 3.4.5.1), the choice of the cameras is limited to a

certain range of cameras, especially digital cameras. Indeed, eye trackers usually are built

with analogue cameras (with composite video output) because they often are small and are

widespread in the market; however, they introduce some artifacts when acquiring videos.

For the eye camera, it is very difficult to find high-quality miniaturized digital parallel cameras.

In Table 18, some cameras are listed keeping in mind the synchronization issue. Another

possible solution (that needs to be tested) could be Wafer Level Cameras (WFC), but they

usually offer poor light sensitivity.

 MBS032M [27] MBS032C [27]
00-C4DCM-01

[28]
UI-1226LE-M

[2929]
UI-1226LE-C

[29]

Company
Mobisense

Systems (FR)
Mobisense

Systems (FR)
C4AV

IDS Imaging
(DE)

IDS Imaging
(DE)

Sensor CMOS (Aptina) CMOS (Aptina) CMOS (Aptina) CMOS (Aptina) CMOS (Aptina)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 45

Chroma Monochrome Color Color Monochrome Color

Optical
Format

1/3 “ 1/3 “ 1/4 “ 1/3 “ 1/3 “

Resolution
(pixels)

752 x 480 752 x 480 640 x 480 752 x 480 752 x 480

Frame Rate
(fps)

60 60 30 87 87

Focal length
(mm)

6 6 X X X

FOV (°) X X X X X

Distortion X X X X X

Sensitivity 4.8 V/lux-sec 4.8 V/lux-sec 5 V/lux-sec X X

Shutter type Global Global Shutter
Electronic

Rolling Shutter
Global Global Shutter

Interfaces GPIO parallel GPIO parallel GPIO parallel
USB (power

supply)
USB (power

supply)

Dimensions
(mm)

26 x 20 x 28 26 x 20 x 28 X 36 x 36 x 20 36 x 36 x 20

Weight
(g)

10 10 X 19 (with lens) 19 (with lens)

Price 74 € 77 € $ 149
~ 300 € (without
lens and USB

cable)

~300 € (without
lens and USB

cable)

 X : Information not available

Table 18: Main characteristics of some camera candidates for a wearable eye-gaze tracker

The Mobisense Systems cameras seem to be a good compromise between performances

and size. IDS imaging cameras are also listed in the table as they could be used to build an

eye-gaze tracking system with synchronization via external triggers (provided by the

company with a proprietary SDK).

The definitive choice of cameras (according to field of view, light sensitivity, focal length, etc)

will be carried out after having evaluating them experimentally in the real scenarios (defined

in WP1).

3.4.5.3 Inertial Measurement Unit

The choice of an inertial measurement unit (IMU) for a new eye tracker is important to

provide measurements about the head movement. IMUs drift increasing over time can be

corrected thanks to computer vision.

Table 19 summarizes the main features of some IMUs which should be considered during a

system design; they are: degree of freedom, sensitivity, angular/acceleration rate range,

interfaces.

Degree of freedom and measurements: The degree of freedom characterizes the number of

coordinates that it takes to specify the position of a system. The measurements are due to

inertial forces acting on the sensor. IMUs combine gyroscopes and accelerometers that

sense either angular (pitch, yaw and/or roll) and acceleration (x, y and/or z) rates.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 46

Sensitivity: The sensitivity of the gyroscopes or the accelerometers of the IMU is the ratio of

the sensor’s electrical output (proportional electrical signal) to mechanical input. The

gyroscope’s sensitivity is measured in mV/° and the accelerometer’s sensitivity in mV/g.

Angular/acceleration rate range: The angular (resp. acceleration) rate range characterizes

the rate of change of angular displacement (resp. acceleration) with respect to time.

IMU interface: Typical interfaces are UART, RS-232 or USB.

Weight and physical dimensions: The IMU is usually positioned on the head of the end-user

and therefore, should be as small as possible and lightweight (maximum 10 g).

Inertia
Cube 3

IMU
Combo
board

IMU 6DOF
v4

Atomic
IMU 6DOF

IMU
6DOF
Razor -
IMU

CHR-6d
ACE_
6DoF_IMU

Company InterSense Sparkfun Sparkfun Sparkfun Sparkfun
CHRobo
tics

Sensor
Dynamics

Degree of
Freedom (DoF)

3 3 6 6 6 6 6

Measurements
yaw, pitch
and roll

x, y and
yaw

x,y,z, yaw,
pitch and
roll

x,y,z, yaw,
pitch and
roll

x,y,z,
yaw, pitch
and roll

x,y,z,
yaw,
pitch
and roll

x,y,z, yaw,
pitch and
roll

Angular rate
range (°/s)

+/- 1200 +/- 300 +/- 500 +/- 300 +/- 300 +/- 400 +/- 300

Acceleration
rate range (g)

-- +/- 1.5
+/- 1.5g,
2g, 4g or
6g

+/- 1.5g,
2g, 4g or
6g

+/- 3 +/- 3 +/- 5

Miscellaneous
Software
Developer
Kit

Accuracy
depends
on ADC
handling

16/32 bits
micropro-
cessor,
GUI open
source
available

Sensors
reading in
ASCII or
binary
format

Accuracy
depends
on ADC
handling

Dev. Kit
included
(otherwi
se 125
€)

--

Interfaces
RS-232,
USB

X Bluetooth
Available
via UART,
XBee or RF

X UART
USB, SPI
and UART

Dimensions
(mm)

26.2 x
39.2 x
14.8

25 x 17.5
50 x 42.5 x
30

35 x 45 x
30

17.5 x
32.5

20.3 x
17.8 x
2.5

23 x 32 x
22

Weight
(g)

17 3 X X X 1.5 X

Price ~ 1200 € 84.10 € 302.86 € 84.10 € 60.55 € 200 € 320 €

-- : Not included X : Information not available

Table 19: Main characteristics of some IMU for an eye-gaze tracker

InterSense’s IMU provides good accuracy but is expensive; it only gives angular rates.

Sparkfun’s IMU are too invasive. The IMU 6DOF Razor - Ultra-Thin IMU has a low accuracy

and depends on ADC handling. The IMU from SensorDynamics are of big size and is too

expensive compared to the CHR-6d which provides 6-DoF measurements on a miniaturized

1.5g-board and seems to be accurate enough.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 47

3.4.6 Head-Mounted Eye-Gaze Tracker: Software Design

Gaze Estimation principle

In order to estimate the Point-of-Regard (PoR) on a computer screen (cf. Figure 20), head-

mounted systems typically determine the pupil-glint vector (the glint being a single reflection

on the cornea), but it is also possible to compute another vector, limbus-RP vector, based on

the centre of the limbus and a static eye image reference point (RP).

Figure 20: Head-mounted eye-gaze tracker principle

In head-mounted eye-gaze tracking, the image processing chain can be divided in two steps:

eye detection and gaze estimation (cf. Figure 21).

Figure 21: Head-mounted eye tracker processing pipeline

In the images acquired from the eye camera, the coordinate of the centre of the eye need to

be computed. A feature-based approach will be used as it is fast and gives good precision. In

feature-based approaches, different configurations exist and depend on the use or not of

infrared LEDs (IR LEDs); infrared lights allows enhancing the performance of features

extraction under varying illuminations. Thus, two methods are possible and are described in

Figure 22 (left and right), along with the usual feature-based algorithm (in the centre of the

Figure 22).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 48

Figure 22: Eye detection flowchart

Thereafter, the goal of the gaze estimation step is to establish a mapping of eye tracker

coordinates (here the pupil-glint vector or the limbus-RP vector) to the appropriate range of

application. Because in the scenario defined in section, the user needs to interact with the

computer, the eye tracker coordinates will be mapped to the coordinates of the computer

screen.

3.4.7 Concluding Remarks

Table 20 recalls the functions of every sensor of the Smart Vision Module and consequently,

allows establishing a link between hardware and software development:

Table 20: Sensors functions

All hardware prototypes will be implemented using off-the-shelf components in order to

obtain a low cost solution. All algorithms and corresponding software will be original and will

take into account real scenarios in order to provide the appropriate answer to the targeted

population.

Configuration Sensor Functions

Remote Camera
Detect face and eyes and estimate the gaze
direction

Head-mounted

Eye camera
Estimate the vector of the pupil-glint (or the
limbus centre)

Scene camera

Establish a mapping between the pupil-glint
vector (or limbus centre) and the scene
coordinates and eventually detect calibration
targets (for semi-automatic calibration)

Inertial Measurement
Unit

Compensate for head movements (image
stabilization)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 49

3.4. Enobio Biosignal Unit Specification

Enobio is a wearable, modular and wireless electro-physiology sensor system for the

recording of EEG, ECG and EOG. The transmission of the data collected by its electrodes to

a host computer is made through a wireless connection (IEEE 802.15.4) and a receiver (10.5

x 6 x 1.5 cm.), which is provided with the acquisition device.

Enobio interfaces the host computer through 4 data ports and 1 control port. The control port

is used to send commands to the Enobio sensor such as sampling start and stop or change

the electrode offset signal.

The data ports correspond to the raw data sampled at the electrodes. The sampling rate is

250 samples per second with a 16-bits quantization. The proprietary protocol that

encapsulates the data produces an overhead in the data transmission of 27%. As a result,

the bit rate received in the host computer is 20,3 kbits/s.

The Enobio sensor can be connected to the AsTeRICS platform in three different ways:

 It can be connected through a built-in IEEE 802.15.4 transceiver in the AsTeRICS

platform,

 it can be connected directly through a wire from the Enobio to a serial UART port of

the AsTeRICS platform and,

 it can be connected through a provided receiver which has an USB interface.

The first two options imply major modifications to the current Enobio system way of work. In

the case the AsTeRICS platform provided a built-in IEEE 802.15.4 transceiver, some major

changes would be necessary in the software part of the system. They would consist in

substitute the current USB driver control for a new one for the built-in transceiver. On the

other hand, this choice implies substitute the provided Enobio acquisition device by the built-

in transceiver, thus the AsTeRICS platform would be more compact.

The wired option implies the same software change since a new driver should be controlled,

in this case the serial port device. This option also means not to use the provided IEEE

802.15.4 transceiver since the data would be passed through a wire directly from the Enobio

sensor, but the system would be less wearable since a new cable would be present from the

user head to the AsTeRICS platform.

Finally, the choice of communication between the Enobio sensor and AsTeRICS platform by

provided USB receiver would not imply any change in the driver control as stated above, so

no extra effort should be necessary in order to integrate the USB driver necessary to connect

with the provided receiver.

The FTDI chip driver, necessary for accessing to the Enobio's provided receiver, shall be

installed in the AsTeRICS platform. Up to now there are versions of this driver for all the

potential Operating Systems that an embedded platform can run, i.e., Windows 7/XP/CE,

Windows Mobile, Linux and Pocket PC.

All these Operating Systems are able to handle an USB device since they implement an USB

host controller. Furthermore they are also able to perform floating point arithmetic operations

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 50

at least by software. Therefore, they fit the requirements related with the embedded platform

Enobio will connect to.

In order to control the sensor, a Java application that interfaces with the FTDI driver, is

already implemented. This application implements the proprietary protocol that Enobio uses

and performs the automatic control of the offset signal of the electrodes. In addition, this

software is ready for sending the commands that allow the Enboio sensor to start and stop

sampling.

Since the AsTeRICS Runtime Environment (ARE) proposed in section 2 works over a Java

Virtual Machine and the OSGi framework, this software will be reused and modified properly

in order to become the interface of the Enobio sensor with the ARE.

The current user interface of the Java application is not needed, so it shall be removed. The

AsTeRICS architecture implements several interfaces, including the IComponentPlugin

which allows access to the data and capabilities of the sensors of the system, so in order to

interface the ARE, this interface is going to be added to the current Java application.

From the previous analysis it is clear that the option of using the provided interface allows

faster integration, since it is not necessary to develop a new piece of software to handle the

hardware interface. This strategy is going to be followed in Prototype 1 of the AsTeRICS

system in order to integrate the Enobio device with the embedded platform.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 51

4 Software Specification and Architecture

The AsTeRICS software framework provides an open and flexible toolkit for enabling the

formation of various AT systems. Its architecture is separated in three parts:

 The AsTeRICS Runtime Environment (ARE)

 The AsTeRICS Configuration Suite (ACS)

 The AsTeRICS Application Programming Interface (ASAPI)

The ARE is used to execute a predefined system design in the target environment, which

usually is the Embedded Computing Platform. As such, it provides a middleware architecture

that controls and manages the components used to form the deployed applications. The ACS

is mainly used to graphically design the layout of the system as a network of interconnected

components. Finally, the ASAPI is used to connect the ACS - or other client applications

running on the PC (like AT-software by consortium member SENSORY) - to the AsTeRICS

Runtime Environment.

Figure 23: High-level view of the system architecture (deployment model)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 52

Central to this arrangement is the system model, which in case of the configuration suite

comprises a set of abstract entities (in the form of components - i.e., sensors, processors

and actuators - and channels), and in case of the embedded platform it comprises of the

actual software and hardware components realizing them, and the actual bindings

established between them.

An overview of the system architecture is illustrated in Figure 23.

The Configuration Suite and the ASAPI are deployed on a personal computer, running a

common operating system (such as Windows or Linux).

The ARE is commonly deployed on an embedded device, running an appropriate operating

system (OS), typically an embedded variant of Windows or Linux. On top of the OS, an

appropriate Java Virtual Machine (JVM) is used to host the OSGi component framework

which provides support for modularity and dynamic loading/unloading of components. All the

core components of the framework (described in detail later) are defined as OSGi modules.

Certain components that need to access legacy code (e.g., written in C or C++) are also

deployed on top of OSGi, and are interfaced to the native code using Java Native Interface

(JNI) as needed. In this regard, and with the exception of the pluggable components that use

native code interfaces with platform-specific JNI bindings, the embedded platform is

expected to be platform independent.

4.1 System Model

The system model describes the software artifacts that are used for realizing the intended

behavior, along with their input and output ports and the channels connecting them. Since

the system model represents the main communication means between the ACS and the

ARE, it is expected to be a serialisable1 object, easy to transfer and translate.

An example of such a visual representation of a model, as designed in BrainBay, is

illustrated in Figure 24. This model shows a simple SIGNAL generator with an output port

connected to a MAGNITUDE processor’s input port. The output port of the latter is connected

to an OSCILLOSCOPE for visualizing the runtime variation of the generated signal.

1
 In software engineering, serializable refers to the property of a programming object of being

transformed to and from a series of bytes which can be communicated or stored via common byte

streaming techniques. The resulting series of bytes practically encodes both the type and the state of

the corresponding object.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 53

Figure 24: Example of system model as seen in BrainBay

As shown in this figure, the components feature input and output ports which are connected

via channels (also referred to as bindings). Furthermore, each component has a set of

properties which characterize their behavior (not shown in Figure 24). For instance, the

signal frequency and amplitude could be properties of the SIGNAL component.

While in the ACS the system model has a conceptual base only, when committed to the ARE

it is realized by instantiating, connecting and activating the corresponding software (and their

underlying hardware) components.

4.1.1 Pluggable Component Modules (PCOM) and Channels

The PCOMs are the main building blocks for any system design within AsTeRICS. In this

case, the components facilitate the following roles:

 Sensors - used to produce data (e.g., a face tracking sensor or the Enobio BCI),

 Processors - used to process data (e.g., perform an FFT),

 Actuators - used to consume data towards a goal (e.g., a mouse controller).

Each component has at least one port. Ports are the outlets used to receive or transmit data.

They are classified to input and output ports and are related to certain data types depending

on the data that they are expected to receive or transmit. A sensor (i.e. signal source) makes

data available, a processor (i.e., signal processor) transforms or combines signal values, and

an actuator (i.e., signal sink) consumes data to control the system or initiate data

transmission.

The components communicate through channels which are used for representing the data

flow between ports. From a designer’s perspective, channels can only be formed between an

output and an input port, and the channel is assumed to be directional with the data flowing

from the source output port to the sink input port. Furthermore, from a modeling perspective,

channels can only be formed between ports associated with the same data types.

The graphical system model representation is typically encoded in a well-defined format

inside the ACS (e.g., in XML), so that it can be stored and communicated to and from the

ARE.

The following core components are implemented to provide the functionalities of the high

level software architecture:

 ACS component

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 54

 ASAPI subsystem

 ARE Controller component

 System Display component

 Generic plugin components: Pluggable Component Modules

These components are interfaced through appropriate (external) interfaces:

 IModelService: This interface specifies a service that is provided by the ARE and is

utilized by the components that require read/write access to the system model.

 IMonitorService: This interface specifies a service that is provided by the ARE and is

utilized by the components that require monitoring of the framework operation

(typically the ACS and the included display of the ARE, when available).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 55

Figure 25: Main components of the AsTeRICS software architecture

 IConfigurationService: This interface specifies a service that is also provided by the

ARE and is utilized by the components that require access to reading and setting

configuration properties of the system model (typically the ACS, and the included

display of the ARE when available).

 IComponent: This interface specifies the service that is provided by any component

plugin instance, allowing for control of its lifecycle. The component plugins are

containers of component instances (such as a web-camera sensor, the Enobio BCI

sensor, an FFT processor, a mouse actuator, etc).

This organization is illustrated in Figure 25.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 56

4.1.1.1 Signal processing PCOM for simple HMI

The scope of this section is to describe the pluggable component module that will be

necessary to implement the simple Enobio signal processing functionalities to be executed in

the ARE. The output of these modules will allow performing a simple HMI in Prototype 1.

The objective of this analysis is to present a design architecture that meets the requirements

exposed in section 2.2.1. The functionalities presented there shall be executed and

integrated in the ARE defined unterhalb. It implies they have to be defined as an AsTeRICS

pluggable component module (PCOM).

The main property of this kind of modules is that they run within an OSGi framework which is

hosted by a Java Virtual Machine (JVM). So, the interfaces defined by the OSGi framework

and the ARE shall be present in the design of the Starlab simple signal processing modules

to be defined in the current section.

A design solution for implementing the functionalities described in the requirement file is to

define them as a piece of software based in the framework and interfaces mentioned above.

An alternative solution, in case the required functionalities demand high computational

performance, which could not be achieved by the AsTeRICS platform, is to implement them

in a dedicated external hardware signal processor controlled by a simpler piece of software

integrated in the ARE with its corresponding interfaces.

The former solution implies a pure software-based solution, whose success only depends on

the computational capabilities of the AsTeRICS platform. There are also several design

solution alternatives in order to develop the algorithms of the signal processing

functionalities. Taking advantage of the fact that the PCOMs run in a Java-based framework,

that means they have to be developed in Java, the algorithms could be also developed in this

language. Another approach is to write the algorithms that implement the signal processing

functionalities in native C/C++ language and access them through the Java native Interface

(JNI). It will allow, in general, a faster execution of the algorithms, furthermore the

implementation could be moved faster to other lighter platforms without JVM such as the

ones based in micro-controllers, that could be of interest for future Starlab's developments.

The latter solution, based on a hybrid hardware-software solution, is suitable when the

algorithms to be developed need high computational demand that is not affordable by the

current AsTeRICS platform. In that case, a dedicated piece of hardware would carry out the

algorithms and a piece of software running in the ARE would take care of the results output

by the dedicated piece of hardware. This solution has a higher level of complexity but can

solve almost any bottleneck that may come up in a specific algorithm.

Following algorithms, which are taken into consideration for development, fulfil the functional

requirements stated in the requirements section:

 SPROC1-4: FIR filters,

 SPROC6: FFT,

 SPROC7: triggering plus sampling counter,

 SPROC8: sample averaging,

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 57

 SPROC9a: matrix product.

 SPROC10: threshold comparator,

 SPROC11: numerical differentiation,

 SPROC12: FIR filter plus down-sampling,

 SPROC13: Euclidean distance,

 SPROC20: cross correlation,

 SBPROC3: Simple blink detection,

 SBPROC4: Double blink detection.

For all the algorithms, it is needed to accomplish with the real time processing requirement,

so every sample shall be processed in less than 4 ms (250 samples per second). Thus, if the

algorithms ran in an architecture with a performance of 3300 MIPS, for instance, a netbook

with an Intel N270 micro-processor the system would have 0,132 MIPS for processing a

simple sample. For this calculation it has been taken into account that the algorithms share

the micro-processor with 100 more processes (other algorithms, operative system, etc.).

From the algorithm listed above, the ones that are more time consuming are the FFT and the

cross correlation. Their final amount of instructions will depend on the number of samples in

the input vector of the FFT (the frequency resolution) and how long are the two vectors to

cross correlate.

From the previous analysis it makes sense to implement the algorithms in a software-based

solution due to the fact that they do not present evidence of being unable to be executed in a

regular micro-processor with a regular operating system, which is the case of AsTeRICS.

Only in case that resolution of the FFT or the maximum number of iterations for the fuzzy C-

means algorithm needed to be great enough to not be able to process the original sampling

rate, the alternative of developing these algorithms with a hardware-based solution would

make sense. Anyway, in case it is needed to embed the algorithms there will not be time to

develop it for the Prototype 1.

In conclusion, in order to get the best performance in terms of time execution and minimize

the possibility that a bottleneck comes up, the algorithms will be developed using native

C/C++ and wrapping them with the JNI.

4.2 AsTeRICS Runtime Environment (ARE)

The main features of the AsTeRICS Runtime Environment are constituted as follows:

 Includes a mechanism that allows components to be deployed, resolved and

activated dynamically, as defined by the system model;

 Provides methods for accessing and setting its running system model;

 Provides methods for accessing and setting certain properties of the running system;

 Provides methods for monitoring the computing load.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 58

4.2.1 Runtime Model Concepts

The ARE hosts and controls the components that realize the Assistive Technology (AT)

applications. As such, it features a component-based approach, where various specialized

plug-ins (i.e., sensors, processors and actuators) are interfaced together to realize the

desired behavior. The main runtime model concepts in the ARE are the components, the

ports, and the channels (also known as bindings). These concepts are available for

introspection and reflection in runtime (i.e., their properties can be both queried and edited).

In more detail, these artifacts are described in the following:

 Pluggable Component Modules (or simply Components): The components

correspond to any of the three main concepts used in the AsTeRICS system, namely

the sensors, processors, and actuators. Each component has one or more ports,

which are used to connect with other components via channels.

 Ports: The ports are the main concepts used to indicate an input or output

communication outlet of a component. Output ports are used to communicate data

out of a component, while input ports are used to allow data be communicated into a

component. When two components are connected together, the output port of one is

connected to the input port of the other, in essence realizing a channel (or binding).

 Channels (or bindings): A channel is the main concept describing a communication

link. Each binding is unidirectional (i.e., the data communication flow is one way only).

Each channel is explicitly specified via two components and two ports. The source

port, and its corresponding source component, is connected to the target port and to

the corresponding target component. By definition, the former must be an output port

and the latter an input port. The data flow is naturally from the source (output port) to

the target (input port). In order for a channel to be formed, the corresponding data

types of both the source and the target ports must match (i.e., they must both

produce and consume the same data type). Special ports are also defined for forming

event-notification channels, i.e., channels that communicate an arbitrary number of

event types between certain components.

It should be noted that these concepts describe merely types of runtime artifacts. For

instance, component specifies a special component type that can be instantiated multiple

times. In each instantiation, all attributes are static, except the properties that can be edited

in runtime. For example, a specialized signal processing processor can be instantiated

multiple times, with different property values, and can be connected to different components.

While both component instances share the same type, they are individually used and

maintained in the ARE.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 59

Figure 26: Simple view of the runtime model

These artifacts and their relationships are illustrated in Figure 26. This figure illustrates the

relationships between components, ports and bindings. A component consists of one or

more ports. A binding, on the other hand connects exactly two components, via two

corresponding ports. A more detailed description of the main runtime concepts and their

relationships is provided in the following paragraphs.

4.2.1.1 Components

The components are the main artifacts in the ARE runtime model. As mentioned before,

components can serve one of three main roles:

 Sensors: these are components which only feature output ports (i.e., they do not

depend on input from any other components). Typical sensors are commonly coupled

to underlying hardware sensors to generate their output data (e.g., a face tracking

sensor which is coupled to a web-camera), but they can also be completely realized

internally (e.g., a signal generator).

 Processors: these are components which feature both input and output ports. This is

the most common type of components, and provides the foundation for forming

applications. The processor components can be either realized completely internally

(e.g., an average which keeps track of the last n values of a scalar value and always

outputs their average value) or they can be coupled to some external software library

or even coupled to a hardware component (e.g., utilize legacy libraries for complex

signal processing, or even utilize specialized hardware accelerators for highly

demanding computations).

 Actuators: these are components which only feature input ports (i.e., they do not

produce any output that can be utilized by other components). The main role of

actuators is to enable the desired functionality of the applications, and for testing

(e.g., a mobile phone actuator allows to place or answer phone calls and to send

SMS2 messages, while an oscilloscope actuator allows for viewing, and thus testing

or debugging, of signal generators).

Each component has at least one port (otherwise it would be impossible to be interfaced with

other components). Furthermore, components can specify both input and output ports. While

2
 Short Text Message

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 60

components typically offer a fixed set of ports, sometime it is required that specific ports are

defined with a dynamic multiplicity. The following two options are provided, allowing for a

highly versatile component specification:

 1..1 (default): the one-to-one multiplicity indicates that the port is mandatory (i.e., at

least one realization is needed) and up-to-one realization (i.e., no more than one port

can be defined). In simple words, this multiplicity indicates that exactly one realization

of this port is needed. This is the default option.

 1..n: the one-to-many multiplicity indicates that the port is mandatory (i.e., at least one

realization is needed) and up-to-many realizations (i.e., more than one port can be

defined). This option is useful for certain components that can be interchangeably

used with varying numbers of inputs (e.g., a MULTIPLEXER component that can

interchangeably multiplex a varying number of inputs).

Figure 27: Complex view of runtime model for the component concept

These concepts are illustrated in Figure 27. A component can be any of three main

realizations: sensor, processor, and actuator. On the other hand, a port can be instantiated

either as an input or an output port. Sensors have one-or-more output ports only, actuators

have one-or-more input ports only, and processors have both one-or-more input ports and

one-or-more output ports.

4.2.1.2 Ports

The ports are the main concepts allowing interfacing between components. Ports are

classified as input or output ports, depending on their role. Each port features a buffer where

data is accumulated before it is communicated outwards (output ports) or before it is

internally consumed (input ports).

Furthermore, each port is associated with a specific data type, indicating the type of the data

communicating through the port. Examples of such data types, carrying the representation

and semantics as inherited from the Java language [35], are:

 Byte: a single byte

 Char: a single character (used to form strings)

 Integer: a 32-bit integer

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 61

 Long: a 64-bit long integer

 Float: a 32-bit single precision scalar

 Double: a 64-bit double precision scalar

The main properties and relationships of the port concept are illustrated in Figure 28.

Figure 28: Runtime model for the port concept

The port concept features methods for accessing the port type, its multiplicity, its data type,

and also for getting and setting property values. The main subtypes of port are the

OutputPort and the InputPort.

It should be pointed out that the input port is different from the output port by featuring an

additional method for checking whether a binding to the port is mandatory or not. This is

needed to check whether a component is resolved or not (i.e., by checking whether all its

input ports marked as “mustBeConnected” are indeed connected). This is important because

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 62

it ensures that all the defined components are functional, i.e., appropriately connected,

before they are activated.

Finally, it should be noted that special port types will also be defined for event

communication. Unlike common ports which communicate a fixed data type, event ports will

be able to communicate different events, encoded in a uniform way. Input event port types

will be defined with the “mustBeConnected” property set to false by definition. Also, output

event ports will allow the formation of multiple channels using the same output port as a

common endpoint.

4.2.1.3 Channels

The channel is the main concept used for interfacing components through ports. As such, the

channels are defined via a source port in a source component and a target port in a target

component. When formed, certain checks are performed to ensure that the data types of the

source and the target ports are compatible.

Figure 29: Runtime model for the binding concept

A typical binding is illustrated in Figure 29. The binding is associated to two components, and

an input and output port, one from each of them.

Typically, a source, i.e., output port might be associated to multiple targets, i.e., input ports.

Nevertheless, in this runtime model it is assumed that each binding consists of exactly one

source and one target port. One-to-many bindings are also implicitly supported via multiple

instances of one-to-one bindings.

Special channels can also be formed between event ports. In this case, both input and output

ports can be used to connect multiple channels. For instance, the same output event port

can be connected to multiple input event ports, and at the same time, the same input event

port can receive input, .i.e., events from multiple output event ports.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 63

4.2.1.4 Component Architecture of ARE

This subsection describes the internal architecture of the ARE component. Naturally, the

main scope of this component is to maintain and realize the deployed model. As such, it

features the following sub-components:

 Controller: This component is responsible for coordinating the actions inside the ARE.

To achieve this, it uses the other sub-components described below.

 ModelManager: The model manager is used to maintain and manage the model (cf.

section 4.2.1). As such, it provides methods for transforming the model from and to

standard representations (such as XML), for validating its consistency, and for editing

the properties of the modeled concepts (i.e., of the components, channels and ports).

A special feature of the model manager is that it includes an input event port that

allows it to be controlled by the Assistive Technology application for switching

between various individual models.

 Configurator: The configurator is the component which translates the model into

actual components and channels. It is thus responsible for realizing the encoded

models and also for coordinating the activation (i.e., start) and deactivation (i.e.,

pause and stop) of the corresponding components. Before realizing certain models,

the configurator utilizes the validation services of the model manager. Also, in order

to access existing ones, or create new instances of components, the configurator

uses the services available by the component repository. Finally, it also provides

support for forming new channels (or dissolving existing ones) between certain ports.

Figure 30: Internal architecture of the ARE

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 64

 ComponentRepository: The component repository serves two roles. First, it maintains

a list with the available component types, which can be changed when new

components are installed or existing ones uninstalled. Second, it maintains a

repository with the current component instances. New instances can be dynamically

created, and existing ones be dissolved.

 BundleManager: This component allows for dynamically installing (or uninstalling)

software bundles containing one or more components. This is needed to allow for

easy updating of ARE instances with new (or updated) component implementations.

For this purpose, the OSGi bundle mechanisms will be used. In essence, when a new

bundle is installed (or uninstalled), it will be checked whether it contains AsTeRICS

components. If it does, the components will be registered (or unregistered) with the

component repository by reading appropriate metadata from the bundles.

The relationships between the sub-components are illustrated in Figure 30. Also, to illustrate

the interaction between these components in use, consider the sequence diagram illustrated

in Figure 31.

Figure 31: Sequence diagram illustrating a typical interaction between ACS and ARE

In this diagram, an ACS client (cf. section 4.3) is used to design an application model (i.e.,

graphically in an appropriate GUI), which is then deployed in he ARE. For this, the ASAPI

protocol is used, which however is not illustrated here to avoid cluttering (for more

information on the ASAPI see section 4.4).

On receiving the deploy message, the Controller (which is the main component of the ARE)

uses the model service to transform the model, which is encoded in XML, into its object

representation. The resulting model is then deployed using the configuration service. The

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 65

latter first validates the model, using the model service, and then performs a set of

commands which aim at realizing the modeled application. These commands include the

instantiation of component instances, via the component repository, and the physical

connection of the corresponding ports.

To better illustrate the use of modeling concepts in the formation of Assistive Technology

applications, we present the following example.

4.2.1.5 Assistive Technology Application Example

This example realizes a user interface which is controlled by tracking the face of the user. In

essence, the user moves her or his face so that the mouse cursor is controlled by tracking

and interpreting her or his motions. The two main functions realized in this example are:

 First, the mouse cursor coordinates are updated by tracking the user’s nose;

 Second, mouse left-clicks are triggered by tracking the distance of user’s mouth to

her or his chin (i.e., when the user opens her or his mouth, a click is triggered).

The application consists of the following components:

 Face Tracking Sensor: It connects to a web camera and performs image analysis with

the purpose of detecting the user’s face, and producing coordinates for her or his

nose and chin. The output of this sensor is provided via four output ports,

corresponding to the Cartesian coordinates of the nose and chin.

 Integer Averager Processor: Two instances of this component are used to compute

the average value of a predefined set of integers. In essence, this component

features a fixed length FIFO3 list. Input values are pushed to the head, causing older

values to be dropped from the tail. Whenever a new value is received, the average of

the accumulated values is computed and communicated to the output. From a

practical perspective, the two component instances are used to smooth out variations

that may occur in the coordinates produced by the face tracking sensor.

 Derivation Processor: This component applies certain, simple computations to the

input values, as desired. For instance, in this scenario the component instance is

used to compute the difference between the Y value of the node and the Y value of

the chin, in essence computing the distance between the user’s nose and chin (it is

assumed that her or his face is in horizontal position).

 Threshold Processor: This component is used in combination with components such

as the derivation processor to detect when certain conditions apply (in this case the

distance between the nose and chin exceeds a predefined threshold). In practice, this

component is used to identify when the user opens her or his mouth.

 Mouse Actuator: Finally, the mouse actuator component is used to translate the

generated coordinates and the “mouth opening events” to actual mouse actions in the

3
 First In First Out

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 66

system. This component features input ports that are used for specifying the mouse

coordinates and for passing values indicating left-click events.

It should be noted that these components provide a good example of how different strategies

can be used to “drive” the processing in components (i.e., event driven by an input or thread

driven). For instance, the Face Tracking Processor is driven by an underlying thread which

periodically scans and processes the image produced by the web-cam with the aim of

computing the coordinates of the nose and chin of the user. On the other hand, the Integer

Averager Processor is event driven, as it is triggered whenever a new input is pushed to its

port, causing a resulting output value. For more information, see the implementation issues

discussed in section 4.2.1.6.

In order for the application to be realized, obviously, appropriate channels must be formed to

transfer data between the components, essentially realizing the system. These channels are

illustrated in Figure 32.

Figure 32: Example application with face tracking-driven mouse

On one hand, the nose coordinates produced by the Face Tracking Sensor are first

smoothed out by Integer Averager Processors, and then passed on to the Mouse Actuator to

drive the coordinates of the mouse cursor. On the other hand, the Y-coordinates of the nose

and the chin are first processed by the Derivation Processor which computes their difference.

The output of this component is then passed on to the Threshold Processor which computes

when the difference exceeds a certain value, in which case it produces an output which is

used to drive the left-click port of the Mouse Actuator. It should be noted that in this case, the

“Chin-X” output of the Face Tracking Sensor is not connected to any other component, which

is not a problem (its values are still produced but ignored). Furthermore, it should be pointed

out that the Threshold Processor’s output port is an event output port, and the left-click port

of the Mouse actuator is an event input port. The two ports can be easily updated to feature

more event types, such as “right click”, “double click”, etc, assuming that the Threshold

Processor includes the functionality to produce them, and the Mouse Actuator includes the

functionality to consume them.

This example illustrates the use of basic components, providing limited but well-defined

functionality, for the formation of functional Assistive Technology applications. The role of the

AsTeRICS in this architecture could be described as follows:

 The user designs the system using a GUI in the ACS;

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 67

 The modeled application is encoded in a well-known form (e.g., in a predefined, XML-

based format) and then communicated to the ARE;

 The ARE parses the XML-encoded model and produces an object version of it;

 For each of the modeled components, the ARE creates a new instance;

 Also, for each of the modeled channels, the ARE creates a new binding that connects

the corresponding ports;

 Finally, for each of these concepts (i.e., the components, their ports, and the

channels), the ARE set the appropriate properties, as defined in the model.

At that point, the application is ready for activation.

4.2.1.6 Implementation Issues

The following implementation specific issues have been considered:

 Concurrency and thread pools: Since the configurations typically feature multiple

components that are concurrently active, special care is needed with both driving the

components, and synchronizing their processing. The preferred approach dictates:

First, data buffers inside each input or output port, allowing for better coordination of

the data transferring. Second, thread-pool driven processing, where a specified set of

threads will be commonly used to drive the processing in all of the components. As

threads are commonly considered a valuable resource in most JVM implementations,

thread pools allow for minimizing their overhead via reuse and dynamic adjustment of

the pool size. Since J2SE version 5.0, further support is built in the Java framework

for concurrent processing.

 Active and passive processing of data: Typical plug-in design dictates two options for

processing: First, a plug-in is actively processing and generating data, i.e., by

processing in a periodic loop. This can be achieved for example by using a thread

(e.g., by registering with the thread-pool discussed above). Second, certain plug-ins

can be passively reacting to input (i.e., event-driven), when their processing depends

explicitly on received input. For instance, an averager plug-in will process its data only

when a new input value is registered. Both these options will be supported in the

ARE.

 Sampling rate mismatch: Another technical issue concerns the interfacing of

components with different sampling rates. For instance, a signal generating

component could produce values at a higher rate than the desired processing rate of

the target signal consumer. In that case, the preferred solution would be the use of

appropriate processing components (mediators) for downscaling or upscaling the

signal values frequency as needed.

4.2.2 Software Layers in the ARE, Integration of Hardware

Because of the interaction of very different hardware and software components, several

layers will be used to separate the different components. The highest level are the OSGi

(signal) processing plugins, followed by OSGi connectors to the hardware drivers (some of

them will use the Java Native Interface (JNI) to access the drivers). The hardware drivers will

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 68

be the next layer, followed by the hardware interfaces (WIFI, USB, ZigBee, etc.). While the

OSGi layers will be part of the ARE, the hardware components will belong to the AsTeRICS

embedded platform (EP). Figure 33 shows the complete data flow, starting from an input

hardware device, followed by the interface and the device drivers, next to the OSGi plugins

and once again to the hardware layers at EP to the output device.

Figure 33: Hardware interfacing and data flow

4.3 AsTeRICS Configuration Suite (ACS)

The main features of the ACS are as follows:

 Provides graphical methods for defining and editing system models

 Provides methods to acquire and deploy system models from/to the ARE (via ASAPI)

 Provides methods to load and store system models on the PC

 Provides local (software-based) oscilloscopes to display actual live data

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 69

 Provides a user friendly and accessible way to configure and monitor the ARE

4.3.1 Technologies, Frameworks and Patterns

The basic technology will be the Microsoft .NET framework [7] in combination with the

Windows Presentation Foundation (WPF) [8]. These technologies have the advantages of

being well supported by Microsoft Windows and also by assistive technologies via the UI

Automation [9]. For a clear separation of presentation and the data model in the background,

the design pattern of model view controller (MVC) [10] will be used. Another option might be

the model view view model (MVVM) pattern [11], which also provides a clear separation of

presentation and data. Figure 34 shows the layer architecture of the ACS and the interaction

of the ACS with the ARE using the ASAPI.

Figure 34: Layer architecture and interaction of the ACS with the ARE

4.3.2 Graphical Presentation (View)

Figure 35 shows a possible layout of the graphical user interface of the ACS. The elements

for graphical representation will be the standard WPF objects.

During the development process, the language of the UI will be English, for the user tests the

language can easily changed by using resource files in the Language of the users (German,

Polish and Spanish).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 70

Figure 35: Possible layout of the graphical UI

4.3.3 Data Model

The data model will be loaded from the ARE and represented in a collection containing two

classes - plugins and channels. Each class will contain all properties of an object, with the

possibility to alter the editable ones. Furthermore, the model will allow storing a graphical

representation of a plugin, overloading the standard graphic. After the editing process, the

information, stored in the ACS model will be transformed to the ARE data model and

transmitted to the ARE.

4.3.4 Functionalities

The following functionalities will be provided by the ACS:

Functionality Prototype

Read configuration from the ARE PT 1

Write configuration to the ARE PT 1

Show all available plugins for the connected ARE PT 1

Add plugins to the model (out of the available ones) PT 1

Remove plugins from the model PT 1

Add channels between pluging PT 1

Remove channels between plugins PT 1

Change properties of plugins PT 1

All functionalities accessible with keyboard PT 1

Visualisation and graphical elements (e.g. Osciloscope plugin) PT 1

Improvement of the UI following user comments PT 2

All functionalities are accessible fulfilling the ISO Standard 9241-171 PT 2

Group elements in the graphical layout PT 2

Table 21: Functionalities provided by the ACS

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 71

4.4 AsTeRICS Application Programming Interface (ASAPI)

The AsTeRICS Application Programming Interface (ASAPI) is an interface used to enable

advanced communications between the AsTeRICS Runtime Environment (ARE) and

external clients. In principle, ASAPI is a service that is provided by the ARE and can be

consumed by different clients deployed on the same (as the ARE) or remote devices.

While the ARE is implemented on top of JAVA/OSGi, ASAPI clients are assumed to be

implemented on top of a variety of platforms. For this purpose, the actual interfacing between

clients and the ARE is done at a low TCP/UDP/IP level. For this purpose, either a custom

TCP/UDP/IP protocol will be developed, or an existing solution such as Google Protocol

Buffers [12], XML RPC [13], or Apache Thrift [14] could be used.

Figure 36: Basic architecture of ASAPI

The basic architecture of ASAPI is illustrated in Figure 36. The “ASAPI Server” is provided by

a JAVA based implementation, which utilizes the ARE to provide the specified functionality.

On the client side, two interfaces provide the needed functionality: The “ASAPI Client” which

extends the “ASAPI Server” with commands for discovering and connecting/disconnecting to

the server side, and the “ASAPI Native” which provides specialized functionality for deploying

certain components directly in the client, bypassing the ARE. These relationships are

illustrated in Figure 37.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 72

Figure 37: Relationships between the main interfaces of ASAPI

The “ASAPI Server” interface specifies commands that are grouped in the following sections:

 Setup and deploy a model,

 Read and edit the model,

 Read and edit properties (even while running),

 Interface directly to ports in the ARE and

 Status checking.

The commands of the “ASAPI Server” are shown below (in JAVA)

Method Description

Methods to setup and deploy a model

String []

getAvailableComponentTypes();

Returns an array containing all the available (i.e.,

installed) component types. These are encoded as

strings, representing the absolute class name (in

Java) of the corresponding implementation.

String getModel();

Returns a string encoding the currently deployed

model in XML. If there is no model deployed, then

an empty one is returned.

void deployModel(String modelInXML)

throws AsapiException;

Deploys the model encoded in the specified string

into the ARE. An exception is thrown if the specified

string is either not well-defined XML, or not well

defined ASAPI model encoding, or if a validation

error occurred after reading the model.

void deployFile(String filename)

throws AsapiException;

Deploys the model associated to the specified

filename. An exception is thrown if the specified

filename is not found.

void deployModel(String filename,

String modelInXML) throws
Deploys the model encoded in the specified string

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 73

AsapiException;

into the ARE, which assigns the specified filename

to it. An exception is thrown if the specified string is

either not well-defined XML, or not well defined

ASAPI model encoding, or if a validation error

occurred after reading the model. If a model already

exists with the specified filename, then it is

replaced.

void newModel();

Deploys a new empty model into the ARE. In

essence, this is equivalent to creating an empty

model and deploying it using deployModel(String)

above. This results in freeing all resources in the

ARE (i.e., if a previous model reserved any).

void runModel() throws AsapiException;

It starts or resumes the execution of the model. It

throws AsapiException if an error occurs while

validating and starting the deployed model.

public void pauseModel() throws

AsapiException;

Briefly stops the execution of the model. Its main

difference from the stopModel() method is that it

does not reset the components (e.g., the buffers

are not cleared). It throws an AsapiException if the

deployed model is not started already, or if the

execution cannot be paused.

public void stopModel() throws

AsapiException;

Stops the execution of the model. Unlike the

pauseModel method, this one resets the

components, which means that when the model is

started again it starts from scratch (i.e., with a new

state). It throws AsapiException if the deployed

model is not started already, or if the execution

cannot be stopped.

Methods to read and edit the model

String [] getComponents();

Returns an array that includes all existing

component instances in the model (even multiple

instances of the same component type).

String [] getChannels(String

componentID);

Returns an array containing the IDs of all the

channels that include the specified component

instance either as a source or target.

void insertComponent(String

componentID, String componentType)

throws AsapiException;

Used to create a new instance of the specified

component type, with the assigned ID. Throws an

exception if the specified component type is not

available, or if the specified ID is already defined.

void removeComponent(String

componentID) throws AsapiException;
Used to delete the instance of the component that

is specified by the given ID. Throws an exception if

the specified component ID is not defined.

public String [] getAllPorts(String

componentID) throws AsapiException;
Returns an array containing the IDs of all the ports

(i.e., includes both input and output ones) of the

../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 74

 specified component instance. An exception is

thrown if the specified component instance is not

defined.

public String [] getInputPorts(String

componentID) throws AsapiException;
Returns an array containing the IDs of all the input

ports of the specified component instance. An

exception is thrown if the specified component

instance is not defined.

String [] getOutputPorts(String

componentID) throws AsapiException;

Returns an array containing the IDs of all the output

ports of the specified component instance. An

exception is thrown if the specified component

instance is not defined.

void insertChannel(String channelID,

String sourceComponentID,String

sourcePortID, String

targetComponentID,

String targetPortID)throws

AsapiException;

Creates a channel between the specified source

and target components and ports. Throws an

exception if the specified ID is already defined, or

the specified component or port IDs is not found, or

if the data types of the ports do not match. Also, an

exception is thrown if there is already a channel

connected to the specified input port (only one

channel is allowed per input port except for event

ports that can have multiple event sources).

void removeChannel (String channelID)

throws AsapiException;

Removes an existing channel between the

specified source and target components and ports.

Throws an exception if the specified channel is not

found.

Methods to read and edit properties (even while running)

String []

getComponentPropertyKeys(String

componentID);

Reads the IDs of all properties set for the specified

component.

String getComponentProperty (String

componentID, String key);
Returns the value of the property with the specified

key in the component with the specified ID as a

string.

String setComponentProperty (String

componentID, String key, String

value);

Sets the property with the specified key in the

component with the specified ID with the given

string representation of the value.

String [] getPortPropertyKeys(String

portID);
Reads the IDs of all properties set for the specified

port.

String getPortProperty(String

componentID, String portID, String

key);

Returns the value of the property with the specified

key in the component with the specified ID as a

string.

String setPortProperty(String

componentID, String portID, String

key, String value);

Sets the property with the specified key in the port

with the specified ID with the given string

representation of the value.

String []

getChannelPropertyKeys(String

channelID);

Reads the IDs of all properties set for the specified

component. Reads the IDs of all properties set for

../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 75

the specified channel.

String getChannelProperty(String

channelID, String key);
Returns the value of the property with the specified

key in the channel with the specified ID as a string.

String setChannelProperty(

String channelID, String key, String

value);

Sets the property with the specified key in the

channel with the specified ID with the given string

representation of the value.

Methods to interface directly to ports in the ARE

String registerRemoteConsumer(String

sourceComponentID, String

sourceOutputPortID) throws

AsapiException;

Registers a remote consumer to the data produced

by the specified source component and the

corresponding output port. In the background, the

ARE forms a proxy component that is connected to

the specified component and port, which is utilized

to communicate the data to the corresponding

remote consumer. This is similar to the proxy-based

approach used in Java RMI.

unregisterRemoteConsumer(String

remoteConsumerID) throws

AsapiException;

Unregisters the remote consumer channel with the

specified ID.

String registerRemoteProducer(String

targetComponentID, String

targetInputPortID) throws

AsapiException;

Registers a remote producer to provide data to the

specified target component and the corresponding

input port. In the background, the ARE forms a

proxy component that is connected to the specified

component and port, which is utilized to receive the

data from the corresponding remote producer.

void unregisterRemoteProducer(String

remoteProducerID) throws

AsapiException;

Unregisters the remote producer channel with the

specified ID.

byte [] pollData(String

sourceComponentID, String

sourceOutputPortID) throws

AsapiException;

This method is used to poll (i.e., retrieve) data from

the specified source component and its

corresponding output port. Just one tuple of data is

returned. The actual amount of data (i.e., in bytes)

depends on the type of the port (it is the

responsibility of the developer to appropriately deal

with the byte array size).

void sendData(String

targetComponentID,

String targetInputPortID, byte []

data) throws AsapiException;

This method is used to pull (i.e., send) data to the

specified target component and its corresponding

input port. Just one tuple of data is communicated.

The actual amount of data (i.e., in bytes) depends

on the type of the port (it is the responsibility of the

developer to appropriately deal with the byte array

size).

Methods for status checking

String queryStatus();

Queries the status of the ARE system (i.e., OK,

../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/AsapiException.java.html

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 76

FAIL, etc).

String registerLogListener();

Registers an asynchronous log listener to the ARE

platform. Returns an ID which is used to identify the

data packets concerning the registered log

messages.

void unregisterLogListener(String

logListenerID);

Unregisters the specified log listener ID from

asynchronous log messages.

Table 22: The ASAPI Server Interface

The “ASAPI Client”, on the other side, extends the functionality provided by the “ASAPI

Server” by adding commands for discovering and connecting to ARE instances:

 Discover and connect/disconnect to AREs.

The corresponding commands of the “ASAPI Client” are shown (also in JAVA) in the table

below:

Method Description

Methods to discover and connect/disconnect to AREs

InetAddress [] searchForAREs();

Searches in the local area network (LAN) for

available instances of the ARE. The exact protocol

for discovery can vary (e.g., it could be based on

UPnP, SLP, or a custom protocol).

ASAPI_Server connect(InetAddress

ipAddress);

Connects to the ARE at the specified IP address.
The method returns an instance of the ASAPI
Server interface (described above), masking the
functionality provided by the target ARE through
ASAPI.

void disconnect(ASAPI_Server

asapi_server);

Disconnects from the specified instance of the
ASAPI Server, invalidating the reference.

Table 23: The ASAPI Client Interface

Furthermore, a more complex architecture involves also the deployment of the “ASAPI

Native” module. The “ASAPI Native” interface complements the functionality of the “ASAPI

Client” by allowing for native hosting of components directly on the client device. The

resulting architecture is depicted in Figure 38. As shown in this figure, the ACS (or a custom

client) can use directly both the “ASAPI Client” and the “ASAPI Server” interfaces, in order to

realize more complex functionality, e.g., that includes hosting some components locally

(utilizing client-specific functionality) and interfacing them with remote components deployed

in the server. Commonly, the ASAPI Native functionality is provided by a platform-specific

technology, such as a DLL library in the primary client platform (i.e., Windows).

../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/ASAPI_Server.java.html
../../Nearchos%20Paspallis/Desktop/AsTeRICS%20@GOOGLE_CODE/trunk/exportToHTML/org/asterics/middleware/asapi/ASAPI_Server.java.html

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 77

Figure 38: Extended architecture of ASAPI with use of the Native module by the client

Finally, the actual implementations of the “ASAPI Server” and the “ASAPI Client” interfaces

leverage either an existing technology (like the Protocol Buffers, XML RPC and Thrift

mentioned above) or a custom solution that allows transformation of messages in a suitable

form for TCP/UDP/IP communication. An example of such custom implementation is

abstracted in the “ASAPI Protocol” interface. The main methods of the ASAPI Protocol are

listed in Table 24 and the extended definition of the interface in Appendix A. This interface

specifies methods for transforming an invocation into an appropriate packet that can

subsequently be transformed to and from a byte array, suitable for communication over the

network.

Method Description

Packet createPacket(MessageType

messageType, Object [] arguments);

Creates a packet to be communicated over
TCP/UDP/IP, with the specified MessageType
and the specified arguments.

Object [] parsePacket(Packet packet);

Creates an array containing the arguments
encoded in the payload of the packet, as specified
by the MessageType

void send(Packet packet);

Sends the provided packet to the connected peer,
after it is first transformed to a byte array.

Packet receive();

Polls the first packet pending for reception from
the connected peer. It is assumed that received
data are transformed to packets and placed in a
FIFO list, pending reception. This is required
because of the asynchronous nature of receiving
packets.
The packet interface abstracts the basic concept
for communication between ASAPI clients and
servers. It always features a single MessageType.
Also, implementations of this interface typically

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 78

specify methods for converting from and to byte
arrays, suitable for network transfer.

Table 24: The ASAPI Protocol Interface

4.4.1 ASAPI and ARE Interconnection

The following figure shows the ASAPI protocol connection to the ARE and the ASAPI native

interface which provides certain functions for PC AT developers aside the ARE (e.g. mobile

phone access or special PC peripherals which will be investigated during WP6). The native

interface can provide well defined functions (as sending an SMS) which do not imply signal

processing plugins of the ARE, and can thus be accomplished directly on the PC.

As soon as the AsTeRICS Runtime Environment and the embedded platform are involved,

the ASAPI command and data protocol can be used to interact with the ARE.

The ASAPI protocol is a platform independent specification per se. To implement an ASAPI

client, templates in JAVA (server side) and C# (client side) will be provided as an early

outcome of WP4.

Embedded Plattform

ARE

Java / OSGi

PC

ACS (VS/.NET)

ASAPI (VS/.NET))

ASAPI (Java)

3rd party SW

ASAPI (VS/.NET)

incl. native C# API

CELL

PHONE

3D-

mouse

Figure 39: ASAPI client implementations with/without native functions

The following diagrams show two possible scenarios for ASAPI / ARE interconnection (1),

one for the configuration of the ARE and one for the operation thereof (2).

Usually, these scenarios will involve primary and secondary users of the AsTeRICS system:

- AT developers use the Configuration Suite to set up the model for the desired AT-

configuration, tailored to a specific use case or end user (1),

- End users start the system (power up the embedded platform or start the ARE on PC

or netbook) to get their desired AT-configuration (which operated stand alone or in

connection with 3rd-party applications on a PC or netbook (2).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 79

4.4.1.1 ASAPI and ARE in the configuration process

Setting up a model

PC

AsTeRICS Configuration Suite

Embedded Platform

ARE

 (Java/OSGi)

Gripper Plugin Enobio Plugin
IR Gateway

Plugin

ASAPI Server

Tremor

Reduction Plugin

SVM Plugin SVM Plugin

ASAPI Client

Pneumatic

Gripper
IR GatewayEnobio Webcam

SVM Mini USB

CAM

JNI JNI

JNI JNI

OpenCV OpenCV

- query plugins()

- set plugin parameters()

- query model()

- deploy model()

 ASAPI Control Interface

 - configure plugins

 - manage model

Universal HID

actuator plugin

JNI

Figure 40: AsTeRICS configuration scenario, model setup

Figure 40 shows the configuration process of the AsTeRICS Runtime Environment by the

AsTeRICS Configuration Suite via ASAPI. The ASAPI client of the ACS connects to the

ARE’s ASAPI server. It queries the available plugins and their parameters. (In the above

figure, some exemplary plugins are shown for demonstration purpose).

The ACS offers dynamic graphic configuration dialogs to the user, which allows adjustment

of all the plugin parameters. Plugins can be graphically connected. This process does not

need any functional representation of the plugins, only a description of the plugins’ ports,

data types and parameters. All these setup actions are performed via ASAPI control

commands. The finalized model can be deployed to the ARE.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 80

Monitoring, verifying and adjusting a model

PC

AsTeRICS Configuration Suite

Embedded Platform

ARE

 (Java/OSGi)

Gripper Plugin Enobio Plugin
IR Gateway

Plugin

ASAPI Server

Tremor

Reduction Plugin

SVM Plugin SVM Plugin

ASAPI Client

Pneumatic

Gripper
IR GatewayEnobio Webcam

SVM Mini USB

CAM

 ASAPI Control Interface

 - configure plugins

 - manage model

JNI JNI

JNI JNI

OpenCV OpenCV

- query plugins()

- set plugin parameters()

- query model()

- deploy model()

- get data from plugins

Oscilloscope / Meter /

Data Display

ASAPI Data Interface

 - get live data from plugins

 - send data to plugins

Universal HID

actuator plugin

JNI

Figure 41: AsTeRICS configuration scenario, verification and error checking

To verify the setup process, a data connection to desired plugins can be opened in the

Configuration Suite. Thus, live sensor values and their transformation due to the applied

signal processing plugins can be monitored using feedback elements of the ACS like

oscilloscope or bar graphs. Parameters of the plugins can be modified using ASAPI control

commands until the desired behaviour of the ARE is present.

Additionally to the live data transmission for feedback purpose, status and error information

can be queried from the ARE to determine the state of particular plugins.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 81

ASAPI and ARE in the runtime system

Embedded Platform

ARE

 (Java/OSGi)

 PC

3rd party application

e.g. SENSORY – OSKA

ASAPI Client

+native functions

Universal HID

actuator plugin

JNI

Gripper Plugin Enobio Plugin
IR Gateway

Plugin

ASAPI Server

Tremor

Reduction Plugin

SVM Plugin SVM Plugin

Pneumatic

Gripper
IR GatewayEnobio Webcam

SVM Mini USB

CAM

JNI JNI

JNI JNI

OpenCV OpenCV

 ASAPI Control Interface

 - configure plugins

 - manage model

ASAPI Data Interface

 - get live data from plugins

 - send data to plugins

CELL

PHONE

3D-

mouse

ASAPI Native Interface

 - connect PC peripheral

 directly via C++ / .Net

Universal HID

module

Figure 42: AsTeRICS runtime scenario

A fully configured ARE can run as a stand-alone process providing its functionality or

communicate with PC AT-software. A connection between ARE and ACS is no longer

required at that time.

The above runtime scenario consists of a configured ARE, with connected plugins that

interface the external sensors (Enobio, SVM) and actuators (pneumatic gripper, IR gateway).

Third party applications running on the PC can optionally:

 query or send data by using ASAPI data commands

 use the ASAPI native interface to access supported PC peripherals like mobile

phone, 3D mouse

 use ASAPI to connect to the running ARE and send control commands to modify

model or plugin settings

If the Universal HID actuator USB dongle is used, the PC application can obtain data from

the embedded platform via a mouse, joystick or keyboard hook which is provided via the

ASAPI native interface (thereby omitting a dedicated TCP/IP connection to the ARE via the

ASAPI client).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 82

4.4.2 Native ASAPI

Native ASAPI is a software development kit for 3rd party developers to help them adapt their

application for people with motor disabilities. Native ASAPI will be delivered as a set of DLL

libraries and COM objects for the Microsoft Windows Operating system. Native ASAPI works

independently of ARE. The main native ASAPI functions are:

 Interfacing the devices described in the table below and adapting them for the needs

of individual users,

 Adapting the standard computer keyboard and mouse for the needs of individual

users,

 Providing keyboard hook procedures, including for prediction dictionaries.

 Key-press emulation,

 Implementing selected algorithms from the ARE, such as the tremor reduction

algorithm.

The table below lists the devices interfaced by Native ASAPI:

Nr Device Priority

1. 3D Mouse M

2. Windows Mobile phone H

3. USB HID / PS/2 Keyboard L

Table 25: Devices interfaced by Native ASAPI

Native ASAPI will be based on the experience gained in developing of ARE, so some of its

requirements may change during development. The integration of other devices with Native

ASAPI will be considered. The description of Native ASAPI functions, and examples of

Native ASAPI use will be delivered in the Native ASAPI reference document. The actual

design and development of Native ASAPI will be done in the next period, and the detail

specification of the interface will be described in D2.2.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 83

5 BNCI Evaluation Suite

The realization of complex Brain/Neuronal Computer Interaction functionalities is mainly

based on the application of pattern recognition methodologies for the interpretation of brain

and neuronal physiological signals. Therefore they are normally formed by modules

implementing a set of functional stages: data pre-processing, feature extraction and

classification/decision making. In this context it is well known [DOR] that such complex

systems have to be adapted to the user in order to achieve feasible performance. This fact

does not only apply to the adaptation of the classifier parameters to some particular subject,

which is achieved through the realization of training procedures, but to the structure of the

classifying system as well. Results of benchmark competitions, e.g. BCI competition, show

that the same system presents a great degree of performance variability with respect to the

operating subject. If we take for instance the results of the IV BCI competition analyzing the

performance in the classification of motor imagery, we can observe that performance index

used for evaluation, which is defined in the interval [0,1], ranges from 0.27 to 0.77 over the

different subjects for the winning methodology.

The fact mentioned in the former paragraph is supported by theoretical considerations. The

so-called No Free Lunch and Ugly Duckling Theorems [DUD] state that there is no a priori

information on the quality of the features to be used in a classification system, and no a priori

superiority of one classifier over other ones. Therefore these theorems boost the

consideration of pattern recognition as an experimental research field. The consequence for

our work in AsTeRICS is clear. Since we cannot establish a general outperforming

classification system, there is a need for a potential user of the system to select the

components of this classification system. The BNCI Evaluation Suite will implement a

performance evaluation procedure. This procedure will be applied on different configurations

of the pattern recognition system. The main goal of the evaluation performance is the

selection of a pattern recognition structure adapted for a particular application undertaken by

a particular user.

The BNCI Evaluation Suite has to be developed within WP4 of AsTeRICS project. The

Evaluation Suite attains the off-line performance evaluation of BCI frameworks. Performance

will be measured with standard performance measures in BCI, e.g. kappa, TPR/FPR, ITR.

These frameworks may later serve the configuration of BCI systems that may work on-line

for a particular user. Therefore the Evaluation Suite shall be used for prototyping BCI

systems, but not for implementing them in real-time. In this context the Evaluation Suite will

extend the available StarEEGlab toolkit with some functionalities missing. Moreover it should

include as well functionalities for taking data from disk, which is acquired following some

BNCI protocol, and prototype a BNCI system. The requirement table (see Table 8) includes a

list of functionalities that shall or might be implemented within WP4.

The functional requirements detailed in Table 8 are a consequence of the state of the art

analysis included in AsTeRICS D2.4. It includes the consortium requirements, but mainly the

functionalities that the AsTeRICS team need to achieve three goals. The first goal is to

complete the StarEEGlab with some functionality that seems to be used currently in state of

the art systems. The second goal is to reproduce the results of some selected works of the

state of the art. The third goal is to reproduce some standard BCI paradigms, namely P300

and motor imagery.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 84

The two main functionalities to be covered by the BNCI Evaluation Suite are the feature

extraction and the classification. It will also contain a number of routines for pre-processing

data and for evaluating the performance of the different classifiers that will be implemented.

The Evaluation Suite is meant for easily extracting features from physiological data and for

their posterior classification. Simple routines will be integrated in order to make the whole

process as automate as possible. An important part of the suite will deal with the data pre-

processing in order to be able to read the data in the format most usually used by acquisition

devices to be integrated in the AsTeRICS system.

5.1 BNCI Evaluation Suite User Classes and Requirements

The BNCI Evaluation Suite is intended for AsTeRICS technical users. Therefore its main

users will be technicians involved in the configuration of the AsTeRICS system with previous

programming skills in low as well as high level abstraction languages.

The users have expressed very loose requirements for the BNCI Evaluation Suite, most due

to lack of knowledge on the Evaluation Suite purpose at the time of completion of this

deliverable and of the BNCI technologies itself. However, following common sense

reasoning, we can state that it shall be capable of prototyping BNCI complex systems

following some of the currently available protocols, i.e. P300, SSVEP, Mu rhythm. The

Evaluation Suite might be capable of saving output parameters of included functionalities,

which could be eventually used in the recall phase of the BNCI systems taken into account.

Prototyping of non-classical user interfaces based on BNCI might be possible with the

Evaluation Suite.

5.2 BNCI Evaluation Suite Assumptions and Dependencies

The BNCI Evaluation Suite will be developed for integrating functionalities of pre-existing

BNCI toolkits. The dependencies will be mentioned in the functions documentation in order to

ensure its applicability.

5.3 BNCI Evaluation Suite Processing Architecture

The software will be organized in 3 different packages. The different functions included in the

packages usually flow in a sequential processing chain, although its stand alone utilization

should be ensured in the design process. A brief description of these packages follows:

 Data pre-processing: Preparation of data as acquired by sensory units.

 Feature Extraction: Measurement of different signal features.

 Classification: Different Computational Intelligence Techniques for mapping the input

data into different categories.

These packages can be functionally organized in order to implement a BNCI framework as

depicted in the following figure.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 85

Figure 43: Block Diagram of BNCI Evaluation Suite packages

The Data Pre-processing package is formed by 2 sub-packages. The first one includes the

routines for putting the input data in the right format, while the second deals with pre-

processing techniques such as filters, decimation and/or artifacts corrections.

The feature extraction process deals with the measurement of signal characteristics. As a

further goal the extracted features should be significant for the classification problem to be

solved. It is worth to mention that it is not always easy to separate the pre-processing from

the feature extraction. Different types of features can be distinguished depending on the

number of EEG channels taken into account for computing a particular feature. Therefore we

will group the feature extraction procedures in different sub-packages depending on the

number of EEG channels taken into account in their computation.

The classification package will include two sub-packages. In the first one, all functions for

classifying data will be included. In the second one, different functionalities for the

performance evaluation of the classification result will be implemented.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 86

6 Summary and Conclusions

In this document, the requirements and specifications of the hardware and software

architecture of the AsTeRICS system have been defined. The comprehensive list of

requirements is grouped into hardware and software sections for the main AsTeRICS

components and will guide the development process for both system prototypes. The

subsequent specification sections give detailed insight into the architectural concept for the

software layers and describe the features of hardware components which either have been

chosen yet or are being designed in course of the project.

In particular, the decision for a suitable computing platform has been accomplished, following

the state of the art analysis of deliverable 2.4 [3]. The Kontron pico-ITX Single Board

Computer (SBC) has been selected because of the high computational power, sufficient

memory (which is needed e.g. for the SVM) and compatibility to Microsoft Windows, which

makes the development of drivers, especially in the area of HID devices much easier. This

selection also has disadvantages, in particular the bigger form factor and the higher power

consumption of the Atom platform compared to e.g. OMAP-3 systems. These disadvantages

probably will vanish with the next generation of ultra tiny, low power computing platforms,

which can be utilized for Prototype 2 of the AsTeRICS project.

In sections 3.2 to 3.4, important hardware components and their integration into the system

have been described. This includes the Communication Interface Modules (CIMs) which

extend the interfaces of the Embedded Platform, the Universal HID actuator for mouse,

keyboard and joystick emulation, and the Smart Vision Module with its design stages for first

and second prototype.

The software for the AsTeRICS Runtime Environment (ARE) is based upon Java OSGi,

which will make it possible to build a very flexible and component based system, where new

plugins can easily be added to or removed from the system model. All parts of the model

(plugins, attached ports, channels between the ports) will be stored in an XML-based data

structure.

The AsTeRICS Configuration Suite (ACS) can create, edit, read, store and deploy system

models. The ACS allows modification of plugin properties and connection of plugins via their

ports. Additionally, graphical feedback components (e.g. oscilloscope, diagram) will be

available in the ACS, so that the users can get live feedback helping them to find the optimal

configuration. The development technology used for the ACS will be Microsoft .Net because

of an excellent accessibility support (e.g. UI-Automation technology).

The communication between ACS and ARE will be established via the AsTeRICS Application

Programming Interface (ASAPI), a client/server model, where the ARE will act as server and

the ACS will act as client. ASAPI provides functions to transmit the data model, start/stop

services, connect plugins, set properties and many more. ASAPI can be used also by 3rd

party software applications to integrate AsTeRICS functionalities. Additionally, a native

ASAPI implementation will provide certain functions without a connected ARE. In a first

stage, these native functionalities will comprise the connection to a mobile phone and the

connection to a 3D mouse peripheral.

Furthermore, the requirements and features of the BNCI Evaluation Suite have been defined.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 87

The current document will serve as a central resource for the whole development process,

especially for the software implementation of the middleware components and the interaction

of different software and hardware entities of the AsTeRICS system. As such, the hardware

requirements and specifications defined in this document provide the basis for subsequent

development work in WP3, as the software requirements and specifications do for WP4

development.

In course of the upcoming tasks and work packages, certain changes and refinements to the

outlined system architecture will be applied. This process is even intended by the chosen

development methodology (user cantered design, see Description of Work [1]). All such

modifications to the given architectural concept will be described in the architectural

specification of the second system prototype which is subject to deliverable D2.3.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 88

References

1 AsTeRICS Description of Work, technical annex 1 of the AsTeRICS Grant agreement

2 AsTeRICS Deliverable D2.3 – “Report on API-specification for sensors to be integrated into the

AsTeRICS Personal Platform”

3 AsTeRICS Deliverable D2.4 – “Report on the State of the Art”

4 AsTeRICS Deliverable D4.7 – “Report on Feasibility of OSGi porting to the AsTeRICS Personal Platform

Prototype 1”

5 Damasio, A. (2003) Looking for Spinoza: Joy, Sorrow, and the feeling Brain. Harcourt. Translated to

French edition Odile Jacob 2003.

6 Developer Resources for Java Technology, “ Java: Primitive Data Types” [Online], Available:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html. [Accessed: June, 07, 2010].

7 Microsoft .NET framework [Online], Available: http://www.microsoft.com/net/. [Accessed: June, 10,

2010].

8 .NET Framework 4 - Windows Presentation Foundation, “Introduction to WPF” [Online], Available:

http://msdn.microsoft.com/en-us/library/aa970268.aspx. [Accessed: June, 10, 2010].

9 .NET Framework 4, “UI Automation and Microsoft Active Accessibility” [Online], Available:

http://msdn.microsoft.com/en-us/library/ms788733%28v=VS.100%29.aspx. [Accessed: June, 10, 2010].

10 Wikipedia, the free encyclopedia, “Model-View-Controller” [Online], Available:

http://en.wikipedia.org/wiki/Model-view-controller. [Accessed: June, 12, 2010].

11 Wikipedia, the free encyclopedia, “Model-View-ViewModel” [Online], Available:

http://en.wikipedia.org/wiki/Model_View_ViewModel. [Accessed: June, 12, 2010].

12 Protocol Buffers - Google's data interchange format [Online], Available:

http://code.google.com/p/protobuf. [Accessed: June, 14, 2010].

13 XML-RPC, “Simple cross-platform distributed computing, based on the standards of the

Internet.” [Online], Available: http://www.xmlrpc.com/. [Accessed: June, 14, 2010].

14 Apache Thrift [Online], Available: http://incubator.apache.org/thrift/. [Accessed: June, 14, 2010].

15 Kontron AG, “Kontron Pico-ITX Single Board Computer specifications”, [Online], Available:

http://emea.kontron.com/industries/infotainment/pos++poi/single+board+computers+sbcs/pitxsp.html

[Accessed: June, 14, 2010]

16 Mimomonitors.com , MIMO USB-driven Monitor, “MIMO720-S description” [Online], Available:

http://www.mimomonitors.com/products/mimo-720-s [Accessed: June, 16, 2010]

17 D. Li, J. Babcock and D.J. Parkhurst, openEyes: a low-cost head mounted eye-tracking solution,

Proceedings of the 2006 Symposium on Eye Tracking Research and Applications Conference (ETRA),

San Diego, California. New York: ACM Press, pp. 95-100, 2006.

18 Z. Yun, Z. Xin-Bo, Z. Rong-Chun, Z. Yuan and Z. Xiao-Chun, EyeSecret: An inexpensive but high

performance auto-calibration eye tracker: Proceedings of the Proceedings of the 2008 Symposium on

Eye Tracking Research and Applications Conference (ETRA), March 26-28, 2008, Savannah, Georgia.

New York: ACM Press, pp. 103-106, 2008.

19 J. Babcock and J. Pelz, Building a lightweight eyetracking headgear: Proceedings of the 2004

Symposium on Eye Tracking Research and Applications Conference (ETRA), March 22-24, 2004, San

Antonio, Texas. New York: ACM Press, pp. 109-114, 2004.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 89

20 W. J. Ryan, A. T. Duchowski and S. T. Birchfield, Limbus/pupil switching for wearable eye tracking under

variable lighting conditions: Proceedings of the 2008 symposium on Eye tracking research & applications

(ETRA), March 26-28, 2008, Savannah, Georgia. New York: ACM Press, pp. 61-64, 2008.

21 D. W.Hansen and Q. Ji, In the Eye of the Beholder: A Survey of Models for Eyes and Gaze. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.32, No.3, pp. 478-500, 2010.

22 A. Duchowski, Eye Tracking Methodology: Theory and Practice. Springer-Verlag, 2003.

23 D., Li and D. J. Parkhurst, Open-source software for real-time visible-spectrum eye tracking: Proceedings

of the 2nd Conference on Communication by Gaze Interaction (COGAIN), Turin, Italy, pp. 18-20, 2006.

24 A. Villanueva, R. Cabeza, S. Porta, M .Böhme, D. Droege and F. Mulvey, “D5.6 Report on New

Approaches to Eye Tracking. Summary of new algorithms”, Communication by Gaze Interaction

(COGAIN), IST-2003-511598: Deliverable 5.6, 2008. [Online], Available:

http://www.cogain.org/w/images/c/c9/COGAIN-D5.6.pdf. [Accessed: June 7 2010].

25 Pertech, [Online], Available: http://en.pertech.fr/. [Accessed: June 7 2010].

26 G. Litos, X. Zabulis and G. Triantafyllidis, Synchronous Image Acquisition based on Network

Synchronization: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition

Workshop (CVPRW),June 17-22, 2006, New York, New York. Washington DC: IEEE Computer Society,

pp.167, 2006.

27 Mobisense Systems, “Camera Modules”.. [Online], Available:

http://www.mobisensesystems.com/fics/MBS032_datasheet.pdf. [Accessed: June 7 2010].

28 C4AV, “Camera Modules”. [Online], Available:

http://centerforartificialvision.com/Digital_Camera_Modules_C4AV.php. [Accessed: June 7 2010].

29 IDS Imaging, “USB cameras”. [Online], Available: http://www.ids-

imaging.de/frontend/products.php?interface=USB&family=LE&lang=e. [Accessed: June 7 2010].

30 InterSense, “InertiaCube Sensors”. [Online], Available:

http://www.intersense.com/InertiaCube_Sensors.aspx?. [Accessed: June 7 2010].

31 Sparkfun. [Online], Available: http://www.sparkfun.com/. [Accessed: June 7 2010].

32 SensorDynamics, “6 DoF IMU”. [Online], Available: http://sensordynamics.cc/cms/cms.php?pageId=73.

[Accessed: June 7 2010].

33 The BioSig Project [Online], Available: http://biosig.sourceforge.net/ [Accessed: June 9 2010].

34 EEGLAB: interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other

electrophysiological data. [Online], Available: http://sccn.ucsd.edu/eeglab/. [Accessed: June 9 2010]

35 The Java Tutorials: “Primitive Data Types [Online]”. Available:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html. [Accessed: June 15 2010]

http://en.pertech.fr/

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 90

Appendix A

1 The ASAPI Server Interface in JAVA

1 package org.asterics.middleware.asapi;

2

3 /**

4 * Define an abstract service, describing the basic commands available in

the

5 * ASAPI protocol (excluding commands for detecting and connecting to AREs,

6 * which are limited to the client side of the protocol only). This

interface

7 * reflects the functionality provided by the server side.

8 *

9 * @author Nearchos Paspallis [nearchos@cs.ucy.ac.cy]

10 * @author Konstantinos Kakousis [kakousis@cs.ucy.ac.cy]

11 * Date: Jun 8, 2010

12 * Time: 2:56:56 PM

13 */

14 public interface ASAPI_Server

15 {

16 // --------------- Methods to setup and deploy a model ----------------

-- //

17

18 /**

19 * Returns an array containing all the available (i.e., installed)

component

20 * types. These are encoded as strings, representing the absolute class

21 * name (in Java) of the corresponding implementation.

22 *

23 * @return an array containing all available component types

24 */

25 public String [] getAvailableComponentTypes();

26

27 /**

28 * Returns a string encoding the currently deployed model in XML. If

there

29 * is no model deployed, then an empty one is returned.

30 *

31 * @return a string encoding the currently deployed model in XML

32 */

33 public String getModel();

34

35 /**

36 * Deploys the model encoded in the specified string into the ARE. An

37 * exception is thrown if the specified string is either not well-

defined

38 * XML, or not well defined ASAPI model encoding, or if a validation

error

39 * occured after reading the model.

40 *

41 * @param modelInXML a string representation in XML of the model to be

42 * deployed

43 * @throws AsapiException if the specified string is either not well-

defined

44 * XML, or not well defined ASAPI model encoding, or if a validation

error

45 * occured after reading the model

46 */

47 public void deployModel(final String modelInXML)

48 throws AsapiException;

49

50 /**

51 * Deploys a new empty model into the ARE. In essence, this is

equivalent

52 * to creating an empty model and deploying it using

53 * {@link #deployModel(String)}. This results to freeing all resources

in

54 * the ARE (i.e., if a previous model reserved any).

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 91

55 */

56 public void newModel();

57

58 /**

59 * It starts or resumes the execution of the model.

60 *

61 * @throws AsapiException if an exception occurs while validating and

62 * starting the deployed model.

63 */

64 public void runModel()

65 throws AsapiException;

66

67 /**

68 * Briefly stops the execution of the model. Its main difference from

the

69 * {@link #stopModel()} method is that it does not reset the components

70 * (e.g., the buffers are not cleared).

71 *

72 * @throws AsapiException if the deployed model is not started already,

or

73 * if the execution cannot be paused

74 */

75 public void pauseModel()

76 throws AsapiException;

77

78 /**

79 * Stops the execution of the model. Unlike the {@link #pauseModel()}

80 * method, this one resets the components, which means that when the

model

81 * is started again it starts from scratch (i.e., with a new state).

82 *

83 * @throws AsapiException if the deployed model is not started already,

or

84 * if the execution cannot be stopped

85 */

86 public void stopModel()

87 throws AsapiException;

88

89 // ------------ End of methods to setup and deploy a model ------------

-- //

90

91 // ------------- Methods to read and edit the model -------------------

-- //

92

93 /**

94 * Returns an array that includes all existing component instances in

the

95 * model (even multiple instances of the same component type).

96 *

97 * @return an array of all the IDs of the existing component instances

98 */

99 public String [] getComponents();

100

101 /**

102 * Returns an array containing the IDs of all the channels that include

the

103 * specified component instance either as a source or target.

104 *

105 * @param componentID the ID of the specified component instance

106 * @return an array containing the IDs of all the channels which

include

107 * the specified component instance

108 */

109 public String [] getChannels(final String componentID);

110

111 /**

112 * Used to create a new instance of the specified component type, with

the

113 * assigned ID. Throws an exception if the specified component type is

not

114 * available, or if the specified ID is already defined.

115 *

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 92

116 * @param componentID the unique ID to be assigned to the new component

117 * instance

118 * @param componentType describes the component type of the component

to be

119 * instantiated

120 * @throws AsapiException if the specified component type is not

available,

121 * or if the specified ID is already defined

122 */

123 public void insertComponent(final String componentID, final String

componentType)

124 throws AsapiException;

125

126 /**

127 * Used to delete the instance of the component that is specified by

the

128 * given ID. Throws an exception if the specified component ID is not

129 * defined.

130 *

131 * @param componentID the ID of the component to be removed

132 * @throws AsapiException if the specified component ID is not

133 * defined

134 */

135 public void removeComponent(final String componentID)

136 throws AsapiException;

137

138 /**

139 * Returns an array containing the IDs of all the ports (i.e., includes

140 * both input and output ones) of the specified component instance. An

141 * exception is thrown if the specified component instance is not

defined.

142 *

143 * @param componentID the ID of the specified component instance

144 * @return an array (non empty) containing the IDs of all the ports of

the

145 * specified component instance

146 * @throws AsapiException if the specified component instance is not

defined

147 */

148 public String [] getAllPorts(final String componentID)

149 throws AsapiException;

150

151 /**

152 * Returns an array containing the IDs of all the input ports of the

153 * specified component instance. An exception is thrown if the

specified

154 * component instance is not defined.

155 *

156 * @param componentID the ID of the specified component instance

157 * @return an array (possibly empty) containing the IDs of all the

input

158 * ports of the specified component instance

159 * @throws AsapiException if the specified component instance is not

defined

160 */

161 public String [] getInputPorts(final String componentID)

162 throws AsapiException;

163

164 /**

165 * Returns an array containing the IDs of all the output ports of the

166 * specified component instance. An exception is thrown if the

specified

167 * component instance is not defined.

168 *

169 * @param componentID the ID of the specified component instance

170 * @return an array (possibly empty) containing the IDs of all the

output

171 * ports of the specified component instance

172 * @throws AsapiException if the specified component instance is not

defined

173 */

174 public String [] getOutputPorts(final String componentID)

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 93

175 throws AsapiException;

176

177 /**

178 * Creates a channel between the specified source and target components

and

179 * ports. Throws an exception if the specified ID is already defined,

or

180 * the specified component or port IDs is not found, or if the data

types

181 * of the ports do not match. Also, an exception is thrown if there is

182 * already a channel connected to the specified input port (only one

183 * channel is allowed per input port).

184 *

185 * @param channelID the ID to be assigned to the formed channel

186 * @param sourceComponentID the ID of the source component

187 * @param sourcePortID the ID of the source port

188 * @param targetComponentID the ID of the target component

189 * @param targetPortID the ID of the target port

190 * @throws AsapiException if either of the specified component or port

191 * IDs is not found, or if the data types of the ports do not match, or

if

192 * there is already a channel connected to the specified input port

193 */

194 public void insertChannel(final String channelID,

195 final String sourceComponentID,

196 final String sourcePortID,

197 final String targetComponentID,

198 final String targetPortID)

199 throws AsapiException;

200

201 /**

202 * Removes an existing channel between the specified source and target

203 * components and ports. Throws an exception if the specified channel

is

204 * not found.

205 *

206 * @param channelID the ID of the channel to be removed

207 * @throws AsapiException if the specified channel ID is not found

208 */

209 public void removeChannel(final String channelID)

210 throws AsapiException;

211

212 // ---------- End of methods to read and edit the model ---------------

-- //

213

214 // ------ Methods to read and edit properties (even while running) ----

-- //

215

216 /**

217 * Reads the IDs of all properties set for the specified component.

218 *

219 * @param componentID the ID of the component to be checked

220 * @return an array (possibly empty) with all the property keys for the

221 * specified component, or null if the specified component is not found

222 */

223 public String [] getComponentPropertyKeys(final String componentID);

224

225 /**

226 * Returns the value of the property with the specified key in the

227 * component with the specified ID as a string.

228 *

229 * @param componentID the ID of the component to be checked

230 * @param key the key of the property to be retrieved

231 * @return the value of the property with the specified key in the

232 * component with the specified ID as a string, or null if the

specified

233 * component is not found

234 */

235 public String getComponentProperty(

236 final String componentID, final String key);

237

238 /**

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 94

239 * Sets the property with the specified key in the component with the

240 * specified ID with the given string representation of the value.

241 *

242 * @param componentID the ID of the component to be checked

243 * @param key the key of the property to be set

244 * @param value the string-representation of the value to be set to the

245 * specified key

246 * @return the previous value of the property with the specified key in

the

247 * component with the specified ID as a string, or an empty string if

the

248 * property was not previously set, or null if the specified component

is

249 * not found

250 */

251 public String setComponentProperty(

252 final String componentID, final String key, final String

value);

253

254 /**

255 * Reads the IDs of all properties set for the specified port.

256 *

257 * @param portID the ID of the port to be checked

258 * @return an array (possibly empty) with all the property keys for the

259 * specified port, or null if the specified port is not found

260 */

261 public String [] getPortPropertyKeys(final String portID);

262

263 /**

264 * Returns the value of the property with the specified key in the

265 * component with the specified ID as a string.

266 *

267 * @param componentID the ID of the component to be checked

268 * @param portID the ID of the port to be checked

269 * @param key the key of the property to be retrieved

270 * @return the value of the property with the specified key in the

271 * component and port with the specified IDs as a string, or null if

the

272 * specified component or port are not found

273 */

274 public String getPortProperty(final String componentID,

275 final String portID, final String key);

276

277 /**

278 * Sets the property with the specified key in the port with the

279 * specified ID with the given string representation of the value.

280 *

281 * @param componentID the ID of the component to be checked

282 * @param portID the ID of the port to be checked

283 * @param key the key of the property to be set

284 * @param value the string-representation of the value to be set to the

285 * specified key

286 * @return the previous value of the property with the specified key in

the

287 * component and port with the specified IDs, as a string, or an empty

288 * string if the property was not previously set, or null if the

specified

289 * component or port are not found

290 */

291 public String setPortProperty(final String componentID,

292 final String portID, final String key, final String value);

293

294 /**

295 * Reads the IDs of all properties set for the specified component.

296 *

297 * Reads the IDs of all properties set for the specified channel.

298 *

299 * @param channelID the ID of the channel to be checked

300 * @return an array (possibly empty) with all the property keys for the

301 * specified channel, or null if the specified channel is not found

302 */

303 public String [] getChannelPropertyKeys(final String channelID);

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 95

304

305 /**

306 * Returns the value of the property with the specified key in the

307 * channel with the specified ID as a string.

308 *

309 * @param channelID the ID of the channel to be checked

310 * @param key the key of the property to be retrieved

311 * @return the value of the property with the specified key in the

312 * channel with the specified ID as a string, or null if the specified

313 * channel is not found

314 */

315 public String getChannelProperty(final String channelID, final String

key);

316

317 /**

318 * Sets the property with the specified key in the channel with the

319 * specified ID with the given string representation of the value.

320 *

321 * @param channelID the ID of the channel to be checked

322 * @param key the key of the property to be set

323 * @param value the string-representation of the value to be set to the

324 * specified key

325 * @return the previous value of the property with the specified key in

the

326 * channel with the specified ID as a string, or an empty string if the

327 * property was not previously set, or null if the specified channel is

328 * not found

329 */

330 public String setChannelProperty(

331 final String channelID, final String key, final String value);

332

333 // --- End of methods to read and edit properties (even while running)

-- //

334

335 // ---------- Methods to interface directly to ports in the ARE -------

-- //

336

337 /**

338 * Registers a remote consumer to the data produced by the specified

source

339 * component and the corresponding output port. In the background, the

ARE

340 * forms a proxy component that is connected to the specified component

and

341 * port, which is utilized to communicate the data to the corresponding

342 * remote consumer. This is similar to the proxy-based approach used in

343 * Java RMI (see

344 * http://java.sun.com/developer/technicalArticles/RMI/rmi

345 * and <a href="http://today.java.net/article/2004/05/28/rmi-dynamic-

proxies-and-evolution-deployment">

346 * http://today.java.net/article/2004/05/28/rmi-dynamic-proxies-and-

evolution-deployment

347 *).

348 *

349 * @param sourceComponentID the ID of the source component instance

350 * @param sourceOutputPortID the ID of the source output port from

where

351 * data will be communicated

352 * @return remote consumer ID - a unique ID used to select the data

received

353 * for this link

354 * @throws AsapiException if the specified component ID or port ID are

not

355 * defined

356 */

357 public String registerRemoteConsumer(final String sourceComponentID,

358 final String sourceOutputPortID)

359 throws AsapiException;

360

361 /**

362 * Unregisters the remote consumer channel with the specified ID.

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 96

363 *

364 * @param remoteConsumerID the ID of the channel to be unregistered

365 * @throws AsapiException if the specified channel ID cannot be found

366 */

367 public void unregisterRemoteConsumer(final String remoteConsumerID)

368 throws AsapiException;

369

370 /**

371 * Registers a remote producer to provide data to the specified target

372 * component and the corresponding input port. In the background, the

ARE

373 * forms a proxy component that is connected to the specified component

and

374 * port, which is utilized to receive the data from the corresponding

375 * remote producer.

376 *

377 * @param targetComponentID the ID of the target component instance

378 * @param targetInputPortID the ID of the target input port where data

will

379 * be communicated to

380 * @return remote producer ID - a unique ID used to mark the data sent

381 * @throws AsapiException if the specified component ID or port ID are

not

382 * found, or if the input port already has an assigned channel

383 * @see #registerRemoteConsumer(String, String)

384 */

385 public String registerRemoteProducer(final String targetComponentID,

386 final String targetInputPortID)

387 throws AsapiException;

388

389 /**

390 * Unregisters the remote producer channel with the specified ID.

391 *

392 * @param remoteProducerID the ID of the channel to be unregistered

393 * @throws AsapiException if the specified channel ID cannot be found

394 */

395 public void unregisterRemoteProducer(final String remoteProducerID)

396 throws AsapiException;

397

398 /**

399 * This method is used to poll (i.e., retrieve) data from the specified

400 * source component and its corresponding output port. Just one tuple

of

401 * data is returned. The actual amount of data (i.e., in bytes) depends

402 * on the type of the port (it is the responsibility of the developer

to

403 * appropriately deal with the byte array size).

404 *

405 * @param sourceComponentID the ID of the source component

406 * @param sourceOutputPortID the ID of the corresponding output port

407 * @return an array of bytes that includes the requested tuple of data

408 * (can be null if no data were produced)

409 * @throws AsapiException if the specified component ID or port ID are

not

410 * available

411 */

412 public byte [] pollData(final String sourceComponentID,

413 final String sourceOutputPortID)

414 throws AsapiException;

415

416 /**

417 * This method is used to pull (i.e., send) data to the specified

target

418 * component and its corresponding input port. Just one tuple of

419 * data is communicated. The actual amount of data (i.e., in bytes)

depends

420 * on the type of the port (it is the responsibility of the developer

to

421 * appropriately deal with the byte array size).

422 *

423 * @param targetComponentID the ID of the target component

424 * @param targetInputPortID the ID of the corresponding input port

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 97

425 * @param data an array of bytes that includes the communicated tuple

of

426 * data (cannot be null)

427 * @throws AsapiException if the specified component ID or port ID are

not

428 * available

429 */

430 public void sendData(final String targetComponentID,

431 final String targetInputPortID,

432 final byte [] data)

433 throws AsapiException;

434

435 // ------- End of methods to interface directly to ports in the ARE ---

-- //

436

437 // ------------------- Methods for status checking --------------------

-- //

438

439 /**

440 * Queries the status of the ARE system (i.e., OK, FAIL, etc)

441 *

442 * @return a string representation of the current status of the ARE

443 */

444 public String queryStatus();

445

446 /**

447 * Registers an asynchronous log listener to the ARE platform. Returns

an

448 * ID which is used to identify the data packets concerning the

registered

449 * log messages.

450 *

451 * @return an ID which is used to identify the data packets concerning

the

452 * registered log messages

453 */

454 public String registerLogListener();

455

456 /**

457 * Unregisters the specified log listener ID from asynchronous log

messages.

458 *

459 * @param logListenerID the ID of the log listener to be removed

460 */

461 public void unregisterLogListener(final String logListenerID);

462

463 // ---------------- End of methods for status checking ----------------

-- //

464 }

2 The ASAPI Client Interface in JAVA

1 package org.asterics.middleware.asapi;

2

3 import java.net.InetAddress;

4

5 /**

6 * Define an abstract service, describing the basic commands available in

the

7 * ASAPI protocol (excluding commands for detecting and connecting to AREs,

8 * which are limited to the client side of the protocol only). This

interface

9 * reflects the functionality provided by the client side.

10 *

11 * @author Nearchos Paspallis [nearchos@cs.ucy.ac.cy]

12 * @author Konstantinos Kakousis [kakousis@cs.ucy.ac.cy]

13 * Date: Jun 15, 2010

14 * Time: 10:27:58 AM

15 */

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 98

16 public interface ASAPI_Client extends ASAPI_Server

17 {

18 /**

19 * Searches in the local area network (LAN) for available instances of

the

20 * ARE. The exact protocol for discovery can vary (e.g., it could be

based

21 * on UPnP, SLP, or a custom protocol).

22 *

23 * @return an array with the IP addresses where ARE instances were

24 * discovered

25 */

26 public InetAddress [] searchForAREs();

27

28 /**

29 * Connects to the ARE at the specified IP address. The method returns

an

30 * instance of the {@link org.asterics.middleware.asapi.ASAPI_Server}

31 * interface, masking the functionality provided by the target ARE

through

32 * ASAPI.

33 *

34 * @param ipAddress the IP address of the target ARE instance

35 * @return an instance of {@link

org.asterics.middleware.asapi.ASAPI_Server}

36 * masking the ASAPI functionality provided by the target ARE

37 */

38 public ASAPI_Server connect(final InetAddress ipAddress);

39

40 /**

41 * Disconnects from the specified instance of the

42 * {@link org.asterics.middleware.asapi.ASAPI_Server}, invalidating the

43 * reference.

44 *

45 * @param asapi_server the instance of

46 * {@link org.asterics.middleware.asapi.ASAPI_Server} to be

disconnected

47 */

48 public void disconnect(final ASAPI_Server asapi_server);

49 }

3 Example of ASAPI Protocol Implementation in JAVA

1 package org.asterics.middleware.asapi;

2

3 /**

4 * The ASAPI_Protocol is a helper class that provides the functionality

required

5 * to interface implementations of the {@link ASAPI_Client} and the

6 * {@link ASAPI_Server} interfaces with the actual code that enables actual

7 * communication at the network level through TCP/UDP/IP.

8 *

9 * @author Nearchos Paspallis [nearchos@cs.ucy.ac.cy]

10 * @author Konstantinos Kakousis [kakousis@cs.ucy.ac.cy]

11 * Date: Jun 15, 2010

12 * Time: 11:26:20 AM

13 */

14 public interface ASAPI_Protocol

15 {

16 /**

17 * Creates a packet to be communicated over TCP/UDP/IP, with the

specified

18 * {@link MessageType} and the specified arguments.

19 *

20 * @param messageType the type of the message

21 * @param arguments the arguments defined in the message signature

22 * @return an instance of {@link Packet} encoding the specified message

and

23 * arguments

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 99

24 */

25 Packet createPacket(final MessageType messageType, final Object []

arguments);

26

27 /**

28 * Creates an array containing the arguments encoded in the payload of

the

29 * packet, as specified by the {@link MessageType}.

30 *

31 * @param packet the packet of which the payload is to be parsed

32 * @return an array containing the arguments encoded in the payload of

the

33 * packet

34 */

35 Object [] parsePacket(final Packet packet);

36

37 /**

38 * Sends the provided packet to the connected peer, after it is first

39 * transformed to a byte array.

40 *

41 * @param packet the packet to be transmitted

42 */

43 void send(final Packet packet);

44

45 /**

46 * Polls the first packet pending for reception from the connected

peer. It

47 * is assumed that received data are transformed to packets and placed

in

48 * a FIFO list, pending reception. This is required because of the

49 * asynchronous nature of receiving packets.

50 *

51 * @return a packet corresponding to the received bytes

52 */

53 Packet receive();

54

55 enum MessageType

56 {

57 // methods to setup and deploy a model

58 GET_AVAILABLE_COMPONENT_TYPES("GET_AVAILABLE_COMPONENT_TYPES",

0x0001),

59 GET_MODEL("GET_MODEL", 0x0002),

60 DEPLOY_MODEL("DEPLOY_MODEL", 0x0003),

61 NEW_MODEL("NEW_MODEL", 0x0004),

62 RUN_MODEL("RUN_MODEL", 0x0005),

63 PAUSE_MODEL("PAUSE_MODEL", 0x0006),

64 STOP_MODEL("STOP_MODEL", 0x0007),

65 // methods to read and edit the model

66 GET_COMPONENTS("GET_COMPONENTS", 0x0008),

67 GET_CHANNELS("GET_CHANNELS", 0x0009),

68 INSERT_COMPONENT("INSERT_COMPONENT", 0x000a),

69 REMOVE_COMPONENT("REMOVE_COMPONENT", 0x000b),

70 GET_ALL_PORTS("GET_ALL_PORTS", 0x000c),

71 GET_INPUT_PORTS("GET_INPUT_PORTS", 0x000d),

72 GET_OUTPUT_PORTS("GET_OUTPUT_PORTS", 0x000e),

73 INSERT_CHANNEL("INSERT_CHANNEL", 0x000f),

74 REMOVE_CHANNEL("REMOVE_CHANNEL", 0x0010),

75 // methods to read and edit properties (even while running)

76 GET_COMPONENT_PROPERTY_KEYS("GET_COMPONENT_PROPERTY_KEYS", 0x0011),

77 GET_COMPONENT_PROPERTY("GET_COMPONENT_PROPERTY", 0x0012),

78 SET_COMPONENT_PROPERTY("SET_COMPONENT_PROPERTY", 0x0013),

79 GET_PORT_PROPERTY_KEYS("GET_PORT_PROPERTY_KEYS", 0x0014),

80 GET_PORT_PROPERTY("GET_PORT_PROPERTY", 0x0015),

81 SET_PORT_PROPERTY("SET_PORT_PROPERTY", 0x0016),

82 GET_CHANNEL_PROPERTY_KEYS("GET_CHANNEL_PROPERTY_KEYS", 0x0017),

83 GET_CHANNEL_PROPERTY("GET_CHANNEL_PROPERTY", 0x0018),

84 SET_CHANNEL_PROPERTY("SET_CHANNEL_PROPERTY", 0x0019),

85 // methods to interface directly to ports in the ARE

86 REGISTER_REMOTE_CONSUMER("REGISTER_REMOTE_CONSUMER", 0x001a),

87 UNREGISTER_REMOTE_CONSUMER("UNREGISTER_REMOTE_CONSUMER", 0x001b),

88 REGISTER_REMOTE_PRODUCER("REGISTER_REMOTE_PRODUCER", 0x001c),

89 UNREGISTER_REMOTE_PRODUCER("UNREGISTER_REMOTE_PRODUCER", 0x001d),

D2.1: System Specification and Architecture AsTeRICS

30 June 2010 Page 100

90 POLL_DATA("POLL_DATA", 0x001e),

91 SEND_DATA("SEND_DATA", 0x001f),

92 // methods for status checking

93 QUERY_STATUS("QUERY_STATUS", 0x0020),

94 REGISTER_LOG_LISTENER("REGISTER_LOG_LISTENER", 0x0021),

95 UNREGISTER_LOG_LISTENER("UNREGISTER_LOG_LISTENER", 0x0022),

96 // methods for communicating data in remote channels

97 SEND_STREAMING_DATA("SEND_STREAMING_DATA", 0x0023),

98 RECEIVE_STREAMING_DATA("RECEIVE_STREAMING_DATA", 0x0024);

99

100 private final String messageType;

101 private final int code;

102

103 private MessageType(final String messageType, final int code)

104 {

105 this.messageType = messageType;

106 this.code = code;

107 }

108

109 public int getCode()

110 {

111 return code;

112 }

113

114 public String toString()

115 {

116 return messageType + "(" + code + ")";

117 }

118 }

119

120 /**

121 * The packet interface abstracts the basic concept for communication

122 * between ASAPI clients and servers. It always features a single

123 * {@link org.asterics.middleware.asapi.ASAPI_Protocol.MessageType}.

Also,

124 * implementations of this interface typically specify methods (e.g.,

125 * static) for converting from and to byte arrays, suitable for network

126 * transfer.

127 */

128 interface Packet

129 {

130 public MessageType getMessageType();

131

132 /**

133 * Defined in the actual implementation of the {@link Packet} to

allow

134 * for getting the packet as a byte array, ready to be

communicated.

135 *

136 * Used by {@link ASAPI_Protocol#send(Packet)}

137 *

138 * @return a byte array representation of the packet

139 */

140 // static byte [] getBytes();

141

142 /**

143 * Defined in the actual implementation of the {@link Packet} to

allow

144 * for creating a packet from a byte array, as it was received.

145 *

146 * Used by {@link ASAPI_Protocol#receive()}

147 */

148 // static Packet fromBytes();

149 }

150 }

