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Kurzfassung 
Im Laufe dieser Bachelorarbeit wird ein Roboter-Modell für Menschen mit Behinderung 
entwickelt um eine größtmöglich Selbstständigkeit zu gewährleisten. Dabei können 
verschiedene Sensoren wie Gesichts- oder Augen-Scanner, einer Gehirn- Computer 
Schnittstelle (BNCI), Joysticks, uvm. zur Steuerung verwendet werden. Durch die 
Verschmelzung dieser Sensoren mit dem AsTeRICS System (Assistive Technology Rapid 
Integration and Construction Set) können verschiedene Geräte wie Computer oder „on-
screen keyboards“ einfach über eine einzige Plattform gesteuert werden. Durch Verwendung 
dieser Sensoren und dem AsTeRICS System soll die Steuerung eines Roboters und des 
darauf montierten Roboterarms ermöglicht werden. Es wird ein Roboter des Typs 
PioneerP3-at verwendet. Der Roboterarm wurde von der Firma Neuronics hergestellt und ist 
ein sogenannter „Katana Arm“. In dieser Bachelorarbeit werden alle nötigen Funktionen, die 
für die Steuerung notwendig sind, eingefügt: der Roboter wird mit Hilfe eines „on-screen 
keyboards“ vorwärts, rückwärts, links, rechts fahren, sowie verschiedene Objekte greifen 
können. Des Weiteren wird eine automatisierte Navigation implementiert, mit welcher der 
Roboter bis zu fünf verschiedene Positionen selbstständig anfahren kann. Das für die 
Steuerung verwendete „on-screen keyboard“ wird auf einem Rechner mit dem 
Betriebssystem Windows betrieben. Der Roboter empfängt den Befehl über das Netzwerk 
und bewegt sich in die gewünschte Richtung. Das Roboter Modell wurde mit einem 
Simulationsprogramm sowie mit dem Roboter selbst getestet und es zeigte sich, dass sich 
der Roboter wie vom Benutzer gewünscht bewegt. 

Schlagwörter: PioneerP3-at, On Screen Keyboard, AsTeRICS, ROS, OSKA, 
Handicapped Person 
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Abstract 
In the course of this Bachelor thesis, a robot interface for handicapped people with the use of 
different sensor techniques like brain computer interfaces (BNCI), face- or eye-tracking, 
momentary switches, mice or joysticks, puff and sip sensors, and many more will be created. 
Through merging these sensors within the AsTeRICS system (Assistive Technology Rapid 
Integration and Construction Set), various devices such as personal computers or on-screen 
keyboards can be easily controlled via a single platform. With the use of the AsTeRICS 
framework and the mentioned devices, the manipulation and navigation of a four-wheeled 
robot platform called ‘PioneerP3-at’ shall be established. In this bachelor thesis, the basic 
movements of the robot and a mounted katana arm, as also an intelligent collision query 
have been implemented by utilizing and extending functions and modules of the Robot 
Operating System (ROS) which is a widely used open source collection of algorithms for 
robot control. For this purpose, a suitable grid with selectable cells for directions has been 
designed for the OSKA on-screen keyboard application. This on-screen keyboard runs on 
any computer with Windows operating system installed and communicates with the 
AsTeRICS system via TCP/IP sockets. In AsTeRICS models, developed in this thesis, the 
robot and katana arm can be controlled by various input devices. The mobile platform 
receives the command via the network and moves as desired. The model was successfully 
tested with a simulation tool and then executed on the real robot platform, a PioneerP3-at 
system. The tests showed that the robot moves as desired. 

Keywords: PioneerP3-at, On Screen Keyboard, AsTeRICS, ROS, OSKA, Handicapped 
Person 
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1 Introduction 
People with reduced motor capabilities often have problems using standard input methods 
for computers and other information technologies. The AsTeRICS (“Assistive Technology 
Rapid Integration and Construction Set” [1]) therefore provides software for “Assistive 
Technologies” which provides handicapped persons an easy access to human-machine-
interfaces (HMI). There are various devices on the market, but they do not allow a full access 
to or an easy modification of the device capabilities. The therapist or handicapped person 
therefore cannot adapt the software by him or herself easily but has to call a specialist. 
Through the use of an open source software it is possible that the therapist also can modify 
or adapt the software via the Internet through the usage of a library where different models 
are stored and uploaded. So the replacement or adaption of different functions can be easily 
done. Also the ROS framework (Robot Operating System) which is used for programming 
various robot platforms is an open source software which allows programmers to easily 
extend the software and the robot itself with special functions or additional manipulators like 
for example a robot arm. 
 
Ambient Assisted Living (AAL) is nowadays omnipresent. Many people with disabilities are 
already using a variety of devices which help them to cope with their everyday life easier or 
to do various things that were previously impossible. Examples are electric wheelchairs, 
automatic door openers and “accessibility supports” for the computer or even whole “smart 
home managements”. On-screen keyboards allow selection of letters, icons or symbols with 
single switches or sensors via so-called “scanning” methods, where rows and columns are 
highlighted and the person uses a desired sensor to select the respective cell on the 
graphical keyboard. The AsTeRICS system provides a configurable on-screen keyboard 
application (“OSKA” [2]), where fully graphical keyboard grids can be designed with a 
dedicated editor. A cell selection by the user can trigger events in the AsTeRICS Runtime 
Environment (ARE), where they can be linked with desired actions. By the use of a “face 
tracking-“ or “eye tracking-system” via “point and click”- operations, the cursor can be 
controlled through head- or eye movements and cells of an on-screen keyboard can be 
efficiently selected [3]. As on-screen keyboards are widely used, there are a lot of researches 
on different scanning processes to find out which is the best way to select a single button. 
This is important when handicapped person only can use a binary input device (like a puff 
and sip sensor). An additional and novel type of support is the use of robots, which are 
equipped with a manipulator arm and can recognize different objects, grab and carry them. 
These robots are designed especially to help elderly and/or people with reduced motor 
capabilities. One example is the recent introduction of a household robot, developed by the 
company Toyota [4]. Also the “Technische Universität Wien” (TU Wien) is developing a robot 
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arm which can identify and grab a specific object [5]. Therefore the idea came up to merge 
the AsTeRICS software with ROS to develop a support robot. With the use of an adaptable 
input interface for people with special needs via AsTeRICS and OSKA and the use of a robot 
that can easily be extended, several assistive functions can be established. The system 
software for the input devices is programmed via the AsTeRICS software and the robot 
control is implemented via the Robot Operating System. For the movement of the robot, the 
AsTeRICS software calls up different functions of a robot plugin, as soon as a direction-
button on the on-screen keyboard is pressed. This plugin then sends the command to move 
in the desired direction to the robot via the wireless network (TCP/IP). The AsTeRICS plugins 
are programmed in the program language JAVA. ROS is based on the programming 
languages C++ and Python. 
 
Summarized, the goal of this thesis is to develop a robot-user interface including an on-
screen keyboard and a suitable scanning method for the buttons. Also a robot-model will be 
created in the ROS framework, which can execute a command received from the network.  
 
In the course of this Bachelor thesis, the mobile platform will be able to move around by 
following commands: 
 

• Move forward 
• Move backward 
• Turn right 
• Turn left 
• Stop 
• Turn around 
• Turn 90° left 
• Turn 90° right 
• Move forward in a left curve 
• Move backward in a left curve 
• Move forward in a right curve 
• Move forward in a right curve 

 
Additionally to the manual navigation, an automatic navigation function is added. That means 
the robot will be able to move to four different locations by its own as also the current position 
can be saved and recalled at any time. 
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The user will also be able to use a katana arm to interact with the environment. Therefore 
following commands for the katana movements were implemented: 
 

• Move forward 
• Move backward 
• Move left 
• Move right 
• Move up 
• Move down 
• Grab 
• Release 
• Save the current position 
• Move to the saved position 
• Move to the initial position 
• Raise the movement width 
• Lower the movement width 

 
As there are three different movement cases, there will be three different on screen 
keyboards available. The user can switch between those anytime in runtime. 
 
In the following chapter (2.1 AsTeRICS system overview) the AsTeRICS framework is 
described and the possibilities for navigating the robot are outlined. Subsequently in chapter 
2.2 the Robot Operating System ROS and for this thesis necessary ROS functions are 
described. Chapter 2.4 describes what a point cloud is. Chapter 2.5 describes how an 
infrared distance measurement works and chapter 2.6 describes the term kinematics. In 
chapter 2.7 a TCP/IP connection is described and in chapter 2.8, the utilized robot platform 
and its modules and functions are presented. Chapter 2.9 describes two use cases. In 
chapter 3, the whole implementation process and all implemented functions are described. 
Chapter 4 presents the results. Chapter 5 and 6 concludes with a discussed and some future 
prospects are mentioned in chapter 7. 
 
It has to be mentioned that all terms by whatever means, either male or female, that they 
have to be interpreted gender-free and that both sexes are meant, although it is not as such 
mentioned. 
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1.1 Potential Target Group 
As the number of people with reduced motor capabilities has not reduced in the last years 
the assistive technologies market and its products have developed very fast. More than three 
million people worldwide are affected by paraplegia. Of these three million people around 
52% have hemiplegia and around 46% have tetraplegia [6]. People with extremely reduced 
motor capabilities can often only use single buttons like momentary switches or puff- and sip-
sensors and therefore depend on assistive devices where the selection of the functions is 
adapted to the physical condition of the user. With the AsTeRICS system it is possible to use 
an input device designed specifically for one particular user, and with the implementation of 
ROS it is possible to link different robot modules with AsTeRICS. So this thesis provides a 
robot-user interface for persons with such physical conditions in particular, and in general for 
all people with motor impairments. So it addresses a wide ranged group. But not only 
handicapped persons can benefit from this idea, also elderly people who have reduced fine 
motor skills could use a service robot system for simple tasks like fetching things or carrying 
objects with the use of a robot arm. 
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2 Material and Methods 
2.1 AsTeRICS system overview 
AsTeRICS consists of different components: the hardware modules and the software 
framework. A great variety of the hardware modules are available. For this thesis, only 
standard mouse input and a webcam for face detection are used. As there are a lot of 
hardware modules, the system can easily be personalized to special needs of a person. The 
actually useable sensors for navigating the robot are described in Chapter 2.4. The full list of 
available Sensors and Actuators can be looked up in the User Manual which can be found 
the download section of the official AsTeRICS website [7]. Figure 1 shows the concept of the 
AsTeRICS system. 

 
Figure 1: Concept of the AsTeRICS system (Source [1], S. 6) 

 
The hardware components include all sensors- and actuator modules, the Communication 
Interface Modules (CIMs) and a computing platform like a laptop, tablet, etc. The sensors 
and actuators are used to establish an interaction between the user and his environment. 
The CIM then provides an interface and connects the sensors and actuators to the 
computing platform where the ARE (AsTeRICS Runtime Environment) runs. As computing 
platform any device with Windows operating system can be used. The ARE provides all the 
functions which are included in the currently loaded model or application. The application or 
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models have functions for signal processing of the actuators and sensors. These applications 
are programmed with the AsTeRICS Configuration Suite and can be loaded in the ARE 
through a TCP/IP connection. Thus, models can be adapted and sent to the user's ARE via 
an internet connection. 
 
The following two chapters describe the AsTeRICS Configuration Suite and the AsTeRICS 
Runtime Environment for further understanding of this Bachelor thesis. 
 

2.1.1 AsTeRICS Runtime Environment (ARE) 
The ARE hosts applications which contain the plugins. These plugins provide all the 
functionalities to the application. AsTeRICS applications are also called models or 
configurations. In the ARE, the user can start, pause, stop or deploy a model. The ARE can 
be run on a computer with the operating system Windows or on the AsTeRICS personal 
platform. The AsTeRICS personal platform is an embedded computing platform where input 
devices can be connected and models can be run. The models are configured and designed 
with the AsTeRICS Configuration Suite which is described in the next chapter. Figure 2 
shows how the ARE graphical user interface can look like. The “Main Panel” can contain 
desired GUI-elements for graphical feedback or manipulation of model parameters which can 
be arranged in the ACS GUI designer window. On the “Control Panel” there are four buttons 
for loading, starting, pause or stop a model. The “Main Menu” provides further options and 
models can also be loaded via the “Main Menu”. 
 

 
Figure 2: Graphical User Interface of the ARE (Source [1], S. 14) 
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2.1.2 The AsTeRICS Configuration Suite (ACS) 
With the AsTeRICS Configuration Suite, models can be developed and edited. They also can 
be uploaded or downloaded from/to the AsTeRICS Runtime Environment. It is also possible 
to start, pause and stop a model through the ACS and it does not have to reside on the same 
system as the ARE. The ACS offers all the sensor-, processor- and actuator plugins which 
can be used. They easily can be placed and connected via drag and drop. 
 
Figure 3 shows how the ACS looks like. The plugins can be placed and connected in the 
deployment area (2), which actually constitutes the runnable AsTeRICS model. This model 
can then be uploaded and executed on the ARE. Using the main menu, the user can save, 
open or create a model. In the main menu toolbar (1) the user can interact with the ARE or 
select the components and place them in the deployment area. The ACS includes also a 
plugin creation wizard which allows the creation of a JAVA skeleton for a new plugin by 
specifying the plugin’s input-, output- and event-ports. 

 
Figure 3: Graphical User Interface of the AsTeRICS Configuration Suite (Source [1], S. 16) 

 
In the figure above, the menu area (1), the deployment area (2), the GUI area (3) and the 
properties (4) are shown. The main menu appears when clicking the AsTeRICS button (seen 
on the right).  
 

2.2 ROS overview 
The Robot Operating System is an open source framework for robot software development. 
It was developed by the Stanford Artificial Intelligence Laboratory. Nowadays it is wide 
spread and commonly used in commercial and educational projects. It is designed in a way 
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that it is easy to access and exchange newly programmed packages. A Package (also called 
“stack”) contains all the executables and processes which the robot will use. 
 
According to the developers of the ROS framework the philosophical goals can be 
summarized as: 
 

• Peer-to-peer 
• Tools-based 
• Multi-lingual 
• Thin 
• Free and Open-Source [8] 

 
ROS has many components, tasks and services which provide hardware abstraction, device 
control, re-use of functionalities, message exchange between programs or program parts, 
package management and exchange of libraries for usage on multiple computers. Also a big 
variety of different robot types are compatible with ROS. For the full list of usable Robots, 
visit www.ros.org/wiki/Robots. In this thesis, the “Pioneer P3-at” robot platform is used 
(described in chapter 2.8). In addition, a full list of the compatible sensors exists at 
www.ros.org/wiki/Sensors. 
 
In the following section, the basics and some functions of the ROS framework are described 
in detail for further understanding of this Bachelor thesis. 
 

2.2.1 ROS basics 
The Robot Operating System bases on a topic system where various messages can be 
subscribed to. These messages could contain for example a command for moving the robot 
to the right. The topics and messages are defined in a node. Such nodes can communicate 
with each other through sending messages to a specific topic. This system is described in 
detail with the help of the following picture: 

 
Figure 4: Example of a ROS program with different nodes and topics (Source [9]) 

http://www.ros.org/wiki/Robots�
http://www.ros.org/wiki/Sensors�
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In this example a little turtle can be moved on the screen using the arrow keys of the 
keyboard. The node /turtlesim contains the topic /turtle1/command_velocity which is 
responsible for moving the robot in the desired direction. The node /teleop_turtle publishes 
a message to this topic. The message contains the values for the linear and angular 
movement. The node /turtlesim also defines the graphical interface seen on the screen. All 
two nodes are subscribing to the /rosout node which can be referred to as the endpoint or 
output of the program. 
 
The most important part of ROS is the Master. Its task is to act as a nameservice and to 
store topic- and service- registration information for the nodes. Without the master, nodes 
would not be able to exchange information or even find each other. Nodes communicate with 
the Master to get information about other nodes. This enables the nodes to create 
connections among them. That means nodes do communicate directly, the Master only 
provides lookup information. 
 

2.2.2 ROS services 
For some functions, a request / reply interaction is needed. But the standard ROS publish / 
subscribe model is not really suitable for such interactions. Therefore ROS uses services 
which are defined by a pair of message structure where one is for the request and one for 
the reply. A node can use the service by sending the request message to the node where the 
service is defined and then waits for the reply. 
 

2.2.3 ROS actionlib package 
As described in chapter 2.2.2, with ROS services it is possible to send a request to a node to 
perform a task and then receive a reply to the request. But if the service request takes too 
long, the user may want to cancel the request during execution or get a feedback about the 
request’s progress. Therefore the actionlib package provides a server-client model for such 
preemptable tasks. The so called “ActionServer” and “ActionClient” communicate via a “ROS 
Action Protocol”. This protocol is built on top of ROS messages. On the Client side the user 
can request a goal which then gets executed on the server side. The following figure shows 
the scheme of the “ActionServer” and “ActionClient”. 
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Figure 5: ActionServer and ActionClient communication scheme (Source [12]) 

 
The client and server communicate via “Goal”, “Feedback” and “Result” messages which are 
described below. 
 
Goal 
The “ActionClient” can send a goal message to the “ActionServer” to accomplish a task. For 
example if the user wants to move a robot, the goal message would contain information 
about where the robot should move to. 
 
Feedback 
The feedback message is send periodically from the “ActionServer” to the “ActionClient” and 
tells the client about the progress of the goal. For example in the case of moving the robot, 
the feedback message would contain information about the robots current position. 
 
Result 
The “ActionServer” sends a result to the “ActionClient”. The result contains information about 
the completion of the goal. The result can either be that the goal was achieved or not. The 
result message is sent only once to the “ActionClient”. In the example of moving the robot, 
the result would be that the desired position was reached. 
 

2.2.4 ROS launch files 
For launching multiple ROS nodes locally or remotely and for setting various parameters, 
ROS offers the launch files. In these launch file, every node that should get started and every 
parameter which should get set is written down. Also launch files for other nodes can be 
invoked. The commands in the launch file are invoked consecutively. The following figure 
shows an example of a launch file. In the first line, the launch file for the node “p2os_driver” 
gets executed. In the second part, the nodes for converting a point cloud into a laser scan 
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are started and in the third section the nodes for the front and back camera drivers are 
stated. 
 

 
Figure 6: Example of a launch file for converting a point cloud into a laser scan 

 

2.2.5 Transformations and parent-child dependencies 
With the help of transformations the user can keep track of multiple coordinate frames over 
time. The relationships between every coordinate frame bases on a tree structure which is 
buffered in time. Any robotic system normally has a lot of 3D coordinate frames which 
change over time. When relationships are defined between every part of the robotic system 
the user can recall every frame’s position in the world at any time. As transformations base 
on a tree structure, one frame can only have a single “parent” but one “parent” can have 
multiple “children”. 
 
Examples for such dependencies and transformations can be seen in chapter 3.2.2 and 
chapter 3.2.3. 
 

2.3 Sonar 
Active sonar is used to measure the distance to an object. Therefore it uses a sound 
transmitter and a receiver. There are three operation modes: 
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• Monostatic operation mode – the transmitter and receiver are localized in the same 
place 

• Bistatic operation mode – the transmitter and receiver are separated 
• Multistatic operation mode – more than one transmitters or receivers are used 

which are spatially separated 
 
A pulse of sound (called “ping”) is created through the transmitter. The receiver then listens 
for reflections of the radiated pulse. For distance measurements, the time from transmission 
of the sound wave to reception is measured. By knowing the speed of sound, the measured 
time can be converted into a range. The pulse of sound is normally generated electronically.  
 
In figure 7 is shown how a monostatic sonar system works. The red waves represent the 
radiated pulse of sound which are then reflected by an object and sent back to the receiver 
(green waves). By knowing the duration between sending and receiving the distance to the 
object can be calculated. 

 
Figure 7: Principle of how sonar works (Source [13]) 

 

2.4 Point cloud 
A set of vertices in a 3D coordinate system is called point cloud. These vertices typically 
represent an external surface of an object and are defined by X, Y and Z coordinates. That 
means every single point of the cloud represents a specific measured point on the recorded 
object’s surface. When color information is added to the point cloud, it becomes 4D. 
 
For the creation of a point cloud normally 3D scanners are used which measure a set of 
points representing the point cloud. In this bachelor thesis an infrared camera was used. The 
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infrared camera does nothing else as measuring the distance of a set of points. With the 
collected data, a point cloud can be created which is done by software. 
 
The following picture shows a typical point cloud of different objects generated from the 
camera data. As the point cloud also includes the color information of the objects, it is four 
dimensional. 

 
Figure 8: Example of a recorded point cloud (Source [14]) 

   

2.5 Infrared distance measurement 
In infrared distance measurement devices a light beam is sent out from an infrared LED. This 
light beam gets reflected by an object of which the distance should be measured. The 
reflected light beam comes back and hits a position sensor within the device. Depending on 
where the light beam hits the position sensor a different voltage gets emitted. This voltage 
now can be converted into a distance. The following figure shows two light beams reflected 
from different distances (P1 and P2) resulting in two different voltages U1 and U2. 
 

 
Figure 9: Principle of infrared distance measurement (Source [15]) 



 

   20 

2.6 Kinematics 
In classical mechanics the motion of points, objects and group of objects is described 
through kinematics. The cause of motion is not included in kinematics. It is also called the 
geometry of motion. It studies the trajectories and movements of geometric objects, lines and 
points and their velocity and acceleration. In robotics it is used to describe the motion of 
joined parts such as robotic arms or engines. 
 
For the use of kinematics with robotic arms there are two approaches for computing the 
necessary joint movements to reach a desired endeffector position, forward kinematics and 
inverse kinematics. These two approaches are described in detail in the following two sub 
chapters. 
 

2.6.1 Forward kinematics 
In forward kinematics the endeffector position gets computed from the specific joint 
parameters. The endeffector position is not known at the beginning, only the angle of each 
joint is specified. To move the endeffector to a specific position each angle gets altered till 
the desired position is reached beginning with the hierarchic uppermost joint.  With the help 
of the following picture forward kinematics can be easily described. To move the endeffector 
to a desired position the first joint (joint1), which is also the hierarchic uppermost point and 
therefore the start joint, gets moved. Then the remaining joints are also moved till the end 
position is reached. 
 

 
Figure 10: Forward kinematic scheme (Source [16]) 

 

2.6.2 Inverse kinematics 
Inverse kinematics can be referred to as the reverse process of forward kinematics. At the 
beginning only the endeffector position is known. When moving this endeffector to a defined 
point, all joint parameters get calculated with the help of a mathematical expression. For 
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example when the endeffector (in the picture bellow called ikHandle) should be moved to a 
specific position, all joints (joint 1 to joint 4) move according to the calculated angle. 
 

 
Figure 11: Inverse kinematic scheme (Source [16]) 

 

2.7 TCP/IP connection 
TCP stands for “Transmission Control Protocol” and IP for “Internet Protocol”. It acts as 
protocol for communication between a computer and the internet. It defines how the 
computer should be connected to the internet and how data should be transmitted. TCP is 
responsible for the communication between the software and IP is responsible for 
communication between computers. Therefore TCP breaks the data to be sent into packages 
and passes them on to the IP which is responsible for sending them to the correct 
destination. TCP can also assemble incoming IP packages. TCP/IP connection is the most 
common used communication between software and software or computer and computer. 
 

2.8 Robot 'PioneerP3-at' overview 
The PioneerP3-at is a four wheel drive robotic platform. It has an aluminum body, four-wheel 
skid-steer, reversible DC motors, motor-control and drive electronics, high-resolution motion 
encoders and battery power. These components are all managed by mobile-robot server 
software which resides on the onboard computer. Because of the onboard computer it is 
possible to run the client software without any additional PC. The PioneerP3-at can be 
equipped with additional accessories like manipulator arms and grippers, bumper switches 
speech and audio systems, laser mapping systems and many more. So with this robot a high 
customization factor is given and later new features can be easily adapted. As only the robot 
main functions are implemented in this thesis the equipped sensors will not be used. For 
more information about the PioneerP3-at visit the official website 
(www.mobilerobots.com/researchrobots/p3at.aspx). 
 

http://www.mobilerobots.com/researchrobots/p3at.aspx�
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The following figure (Figure 12) shows how the robot currently looks like. It is equipped with 
the hardware components (1), a katana arm (2) for grabbing different objects, a front and 
back bumper switch (3) as also a built in sonar device (4) for collision query and three 
cameras. Two of these are an Asus Xtion Pro (5) with which a distance measurement is 
possible and the other is a normal webcam from Logitech (6) for normal image recognition. In 
the picture below the Logitech webcam is not included but the arrow points to the location is 
should be mounted. 
 

 
Figure 12: Appearance and current setup of the PioneerP3-at robot 

 

2.9 Use Cases 
2.9.1 Navigation via “one button” switches 
As OSKA offers different scanning processes which can easily be defined in the ACS various 
one button switches can be used. For example a puff and sip sensor can be used for the row 
and cell selection. A use case therefore could be that the user can control the row selection 
by blowing into the sensor and for cell selection the user has to blow for a certain amount of 
time. In the case of one button switches any device which can send out a signal by activation 
can be used. 
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Figure 13: Use-case scenario using one button switches for navigation the robot 

 

2.9.2 Navigation via Face tracking 
The head movements are tracked via a normal webcam. The software converts the head 
movements into a movement of the mouse cursor with which several options can be selected 
on an on screen keyboard. Then a plugin converts the command in a command the robot 
understands and sends it to the robot via a TCP/IP connection. The model which does the 
previous described task is located on a personal computer with ARE running on it. The 
following Figure shows a scheme of a possible use-case scenario. 
  

 
Figure 14: Use-case scenario using a webcam for navigating the robot 
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3 Implementation 
3.1 The final version of the AsTeRICS-Pioneer model 
At first, an empty JAVA-skeleton for the pioneer plugin was created with the help of the 
AsTeRICS plugin creation wizard. Then the specific functions of the plugin were programmed 
within the Eclipse IDE, which is a universal toolset for development and programming [10]. 
As AsTeRICS plugins are written in JAVA, Eclipse was configured for this framework. The 
pioneer plugin code opens up a TCP/IP connection (as a client) to a specified host (the 
server part is implemented in the ROS framework) and sends a command which is received 
via a string input port of the plugin to the defined host (robot). For example if the button for 
the forward movement is pressed, the program converts the specific command into a special 
format (called “byte array”) which then is sent via the network to the IP-address specified via 
the plugin properties. The IP-address can be edited with the ACS. The developer must 
ensure that the IP-address of the robot is not changing and is identical with the target IP-
address of the AsTeRICS-Pioneer plugin. If the server side is not started yet, the client can 
still be started because the plugin tries to connect every few seconds and establishes a 
connection as soon as the server side comes up. When the connection is established the 
plugin is ready for sending and also receiving messages. 
 
In figure 15 the OSKA-, robot- and text display- plugin inserted in the ACS can be seen. Via 
the output of the OSKA plugin the desired command is sent to the robot plugin as string. The 
robot plugin forwards this command to the mobile platform. The plugin also checks every few 
milliseconds if there is any data to receive and if needed forwards the received message to 
the text display plugin. On the right site of the figure the editable properties of the robot 
platform can be seen. 
 
Figure 16 shows how the model looks like in runtime. The upper window shows the text 
display where the received message gets displayed. The GUI for manual movement of the 
robot can be seen in the bottom left window. In the bottom right corner of the picture the 
ARE- console can be seen. 
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Figure 15: Model setup of controlling the pioneer with the OSKA plugin 

 

 
Figure 16: Runtime example of the robot model 
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3.1.1 The graphical user interface (GUI) 
The interaction of an OSKA on-screen keyboard as the primary graphical user interface to 
the end user depicts the following advantages: 
 

• Easier ACS model due to less components 
• OSKA features built-in automatic scanning methods (row/column, single key, …) 
• User friendly design of the GUI with icons is possible in the OSKA grid editor 

 
Therefore the GUI is based on an OSKA keyboard. In the scanning process, the selection of 
the button will be switched every second from the left to the right. At first the upper left button 
is selected, then after one second the middle button of the first row is selected and after 
another second passes the right button will be selected and so on. The user then has the 
possibility to press a button by simply pressing an external momentary switch, or by pressing 
the “Enter” key on a special keyboard. For changing the row, the user only has to press the 
button for a certain amount of time. This type of scanning process is only one method and 
can easily be changed in the ACS by connecting different signals to the cell selection input 
ports of the OSKA plugin. 
 
The following figure shows how the GUI for the manual navigation, automatic navigation and 
for katana navigation looks like. With the on-screen keyboard for manual navigation (figure 
17) the user can drive the robot around directly by pressing the desired button. With the 
keyboard for automatic navigation (figure 18), the robot moves to the desired position like the 
fridge, shelter, desk or the battery station automatically. Therefore it plans a path and also 
avoids suddenly appearing obstacles. The current position of the robot can also be saved 
and recalled later if desired. With the on-screen keyboard for the katana arm (figure 19), the 
user can control the robot arm simply by pressing a button. The main movements like moving 
left, right, up, down, forward and backward are implemented. There is also a button for 
moving the arm back to its initial pose or for saving the current position. The saved position 
then can be recalled any time. 
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Figure 17: Appearance of the OSKA keyboard for manual navigation 

 

 
Figure 18: Appearance of the OSKA keyboard for automatic navigation 
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Figure 19: Appearance of the OSKA keyboard for the katana arm 

 

3.2 The final version of the ROS program 
The whole ROS program can be started by executing the “main.launch” file in the package 
“Asterics_Pioneer_Robot”. By executing this file, the following packages and drivers are 
activated successively. 
  

• P2OS driver 
• Katana arm navigation 
• Pointcloud2laser for front camera 
• Pointcloud2laser for back camera 
• Openni for front camera 
• Openni for back camera 
• Static transform 
• Map server 
• Costmap 2D 
• AMCL 
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• Move base 
• Asterics Pioneer Robot 
• Asterics Pioneer Network 

 
The following chapters explain what each individual stack is doing and how they work. 
 

3.2.1 P2OS driver 
This node provides a driver for robots which use a pioneer P2OS/ARCOS interface like the 
P3-AT Robot. The user can send velocity commands for left, right, front and back 
movements to this node which then forwards the command to the robot. With the P2OS node 
the motor state and sonar can also be controlled.  

 
Figure 20: Example of how the P2OS driver works  

 
In figure 20 a “cmd_vel” message gets published from the “Asterics_Pioneer_Robot” to the 
“p2os_driver” node. This message contains information about the direction the robot should 
move to. It then forwards the velocity command to the robot’s motor. The node also 
publishes the topic “pose” (here renamed into “odom”) which contains information about the 
robot’s current position and movements. The node evaluates the current position through 
summarizing all movement events so far. But with this information only the robots 
movements can be tracked, not the actual position on for example a known map. Therefore 
other nodes like AMCL and map server are needed. 
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The p2os driver is an open source package which is updated permanently and can be 
downloaded from the ROS website [20]. Nothing of the original package was altered in this 
bachelor thesis. 
 

3.2.2 Katana package 
For interaction and manipulation of objects there are various open source packages 
available. As on the robot a Neuronics katana arm is mounted, the package 
“katana_arm_navigation” and “katana_driver” stack were used. The “katana_driver” stack 
provides the main driver for the katana arm. With the help of the “katana” node the user can 
control and drive every single motor. The node “katana_arm_navigation” provides the 
kinematics (inverse and forward) for the arm. This node bases on an actionlib, so the user 
can send goal commands to this node. That means if a goal where the endeffector should 
move to is sent to the “katana_arm_navitation” node via a service call, it calculates how each 
motor has to move to reach the goal. The therefore necessary motor movements are then 
sent to the “katana” node which triggers the katana arm to move in the desired position. 
 
Figure 22 shows all transforms from the katana arm. The “katana_gripper_link” refers to the 
endeffector of the arm. The previous links refer to each motor. Figure 21 shows how the 
katana arm looks like and also the name of each joint can be seen.  
 

 
Figure 21: Appearance of the katana arm 
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Figure 22: Hierarchic tree of all links of the katana arm parts 

 
 

3.2.3 Point cloud to laser scan 
The “Pointcloud2laser” uses a generated 3D point cloud and converts it into a 2D laser scan. 
As there are two cameras mounted on the robot (seen and described in chapter 2.8), also 
two “Pointcloud2laser” nodes were created. One publishes the laser scan for the front and 
the other for the back. 
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For the laser scan the following parameters have to be set: 
 

• Minimum height to sample in the point cloud in meters = -0.025 
• Maximum height to sample in the point cloud in meters = -0.025 
• Minimum scan angle = -π/2 
• Maximum scan angle = π/2 
• Scan rate in seconds = 1/30 
• Minimum range in meters = 0.45 
• Maximum range in meters = 10 
• The frame id of the laser scan = “camera_depth_frame_front” 

 
The node takes the ranges of every point from the point cloud in a user specified plain and 
saves them in the laser scan message. The plain is defined by the parameters minimum 
height and maximum height. The point of origin for this plane is defined by the static 
transform between the base frame, camera frame and the laser scan frame (here the laser 
scan frames are named “camera_depth_frame_front” and “camera_depth_frame_back”). 
This parent-child relationship is pictured in figure 23. The frame “base_link” represents the 
center of the robot. This center is now the so called parent of the frames “asus_front_link” 
and “asus_back_link”. These two frames represent the point of origin from the two camera 
devices. The frames “asus_front_rgb_frame” and “asus_back_rgb_frame” belong to the 
RGB-vision of the cameras. The frames “asus_front_depth_frame” and 
“asus_back_depth_frame” belong to the infrared-vision of the cameras. This chapter does 
not elaborate on the frames “odom” and “map” because this is done in chapter 3.2.1 and 
chapter 3.2.6. 

 
Figure 23: Hierarchic tree of the camera and laser scan link 
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For ROS it is necessary to define such dependencies, because they are needed for the 
correct computation of every device’s origin of ordinates. In this chapter the parent-child 
relationships and how the dependencies to each other are defined are not described any 
further, because this is done in chapter 2.2.5. and chapter 3.2.5. 
 
The following figure shows how the point cloud and the laser scan from both cameras look 
like. In the bottom left corner the video feedback of the infrared camera can be seen. The 
point cloud (red) was generated from this image. The computed laser scan (black) can also 
be seen in the picture.  
 

 
Figure 24: Example of a recorded point cloud (red) and the thereof created laser scan (black) 

 

3.2.4 OpenNI camera 
The OpenNI camera node uses the open source framework OpenNI [21] which acts as driver 
for the used camera. As cameras, two Asus Xtion Pros were used (figure 25). They provide 
an infrared and RGB image, as also the depth information of the recorded images. With the 
help of the depth information a point cloud can be generated. The images and the point cloud 
then can be used with ROS as they are published topics. 
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Figure 25: Appearance of the used camera for distance measurement (Source [17]) 

 
The OpenNI camera node gets called up twice because of the two cameras pointing forward 
and backward. The device id and their names are defined in the “main.launch” file when 
calling up the OpenNI launch file. From the original package nothing was altered and can be 
downloaded from the ROS website [22]. 
 

3.2.5 Static transform 
As in chapter 2.2.5 is described that transforms are used to define parent-child relationships 
between the different components, here a static transform is used to define the relationship 
between the base frame, the two camera frames and the laser scan frames. The front 
camera frame is located 20 centimeters and the back camera frame is located -20 
centimeters on the x axis but rotated 180 degrees (corresponds to roughly 3.1415 radian). As 
the point cloud of the camera is used to generate a laser scan, the frames of each laser scan 
is located at the same place as the camera frames. In the transformation tutorial on the ROS 
website it is explained in detail how to use a static transform in a launch [23]. The 
transformation tree for the cameras can also be seen in figure 23. 
 

3.2.6 Map server and slam mapping 
The map server offers map data as a ROS service. With this node a map can be saved or 
loaded. Before saving or loading a map, it has to be created with the help of the package 
slam gmapping. 
 

3.2.6.1 Slam gmapping 
Slam gmapping uses pose (here it is named odom) and laser data collected by the robot to 
create a 2D map like a floorplan. For the process of collecting the data, the user has to drive 
the robot manually through the room and scan everything. To get a reliable and accurate 
map the robot should not be moved around very fast but slow and smooth. The map created 
and used for this bachelor thesis can be seen in figure 26. 
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Figure 26: Appearance of the recorded saved and used map 

 

3.2.6.2 Map server 
After the map was created with the help of slam gmapping, it can be saved by a command 
line order. With this order, two files are generated. One contains the map itself as occupancy 
grid and the other the basic information like size and name of the map. When the map was 
saved successfully, the slam gmapping node is no longer needed and can be closed. To load 
a map, the map server node must be started, which is done in the “main.launch” file where 
also the location and name of the map has to be defined. 
 

3.2.7 Costmap 
This package implements a 2D costmap that takes in sensor data from the robot and builds 
an occupancy grid from the data. With the help of this occupancy grid, the robot now knows 
where to move and how close it can move towards a wall. Also suddenly appearing 
obstacles are registered and recorded. The user has to define some parameters like the 
robot’s safety radius or update rate. In this thesis all needed parameters are loaded when 
calling the move base node. For the full list of editable parameters used by this node visit the 
ROS website [24]. 
 
The following picture shows a generated costamp2D where the red cells represent obstacles, 
the blue sells represent obstacles inflated by the inscribed radius of the robot and the red 
polygon represents the footprint of the robot. To avoid any collision, the footprint of the robot 
should never intersect a red cell and the center of the robot should never touch a blue cell. 
 



 

   36 

 
Figure 27: Example of the appearance of a map including the costmap package (Source [18]) 

 

3.2.8 AMCL 
The AMCL package provides a localization system for robots moving in 2D. It computes the 
robot’s current position in the map with the help of the laser scan and odometry data and 
creates a relationship between the base frame and the map frame. Without this package the 
current position of the robot on the map would not be known. The figure below shows the 
difference between localization using odometry and AMCL. 

 
Figure 28: Example of the function of the AMCL package (Source [19]) 

 



 

   37 

For this bachelor thesis the following parameters were modified:  
 

• Minimum allowed number of particles = 500 
• Maximum error between the true and estimated distribution = 0.05 
• Transform tolerance = 0.9 

 
For the full list of editable parameters used by this node visit the ROS website [25]. 
 

3.2.9 Move base 
This package provides action commands for sending, pausing or canceling a goal which the 
robot will attempt to reach. It uses the map, laser scan and odometry data to plan a path to 
the goal and sends then the corresponding velocity commands to the robot. With the help of 
costmap2D it also tries to avoid appearing obstacles and alters the calculated path in a way 
that the mobile platform drives around this obstacle and does not hit it. For correct path 
planning and obstacle avoidance a lot of parameters have to be adjusted accordingly. All 
these parameters are defined in a few different files, which are loaded in the “main.launch” 
file when calling the move base node. In these files also the parameters for the costmap2D 
are defined. For the full list of editable parameters used by this node visit the ROS website 
[26]. 
 

3.2.10 Asterics Pioneer Robot 
This package is responsible for the movements of the robot itself and the katana arm. It gets 
the commands from the “Asterics_Pioneer_Network” node and processes them. Before 
starting this node the robot must stand on its initial position which is here defined as the 
battery station. Now when starting the node, the robot’s position gets set correctly in the map 
and the localization, obstacle avoidance through costmap2D and the path planning should 
work correctly. After the position is set, the katana arm will move into its initial pose. When 
these two processes are completed the node waits for incoming commands. If a command 
arrives, the node checks if it is meant for the katana arm or the mobile platform and acts 
accordingly.  
 
For example, when the user presses the button for the forward movement of the robot, the 
node “Asterics_Pioneer_Network” gets this command and forwards it to the 
“Asterics_Pioneer_Robot” node. This node then checks if it is meant for the mobile platform 
or for the katana arm. It jumps right in the mobile platform class and checks which command 
should be performed. As it is a command for forward movement, the node sends an 
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appropriate velocity command to the node “p2os_driver” which then drives the robot in the 
desired direction. If a katana movement command is coming in, the node sends the 
appropriate velocity command to the nodes responsible for the katana arm (explained in 
detail in chapter 3.2.2). 
 
If desirable, an additional obstacle avoidance function with the use of the built in sonar 
device can be started. But therefore the user has to alter the program code a little bit so that 
the additional collision query gets also started. 
 

3.2.11 Asterics Pioneer Network 
This package is responsible to establish a network connection to the computer where the 
GUI is running. It acts as server and the other computer acts as client. When starting this 
node, it waits until a client connects. It has to be ensured that the client uses the right port to 
connect to, because the on the server side, the port on which the client should connect to, is 
defined in the program code. When the client connects and no error occurred, the node is 
ready to receive commands. This command is then published as ROS topic to the node 
“Asterics_Pioneer_Robot” where it gets reprocessed. The “Asterics_Pioneer_Network” node 
is also able to send such a message to the client where it gets displayed in a text field. 
Therefore it checks every few milliseconds if there is something to send. For example if an 
obstacle occurs in front of the robot, the node can send a situation related message to the 
computer of the user where it gets displayed on the screen. The client side of the robot 
model is described in detail in chapter 3.1.  
 

4 Results  
4.1 Testing the robot-model by simulation 
For simulation the program gazebo was used. It is a simulation tool with which every function 
of the robot can be tested, just like using a real robot. Figure 29 and figure 30 show the 
graphical interface of the simulation tool. With Gazebo it is possible to generate and edit 
complex simulation scenarios by simply dragging and dropping walls or objects. Such 
elements also can be inserted by writing a command into the console or terminal. It is also 
possible to record the movements for further analysis of the systems behavior 
 
For executing the simulation, the ARE running the AsTeRICS-Pioneer model was started on 
a computer running the operating system Windows 7. The Gazebo simulator and the ROS 
program which receives the commands sent by the ARE were started on a laptop running the 
operating system Ubuntu. These two computers were connected over the network using a 
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WLAN-Router. When testing the whole program and every function, the robot and the katana 
arm moved as desired. For example when the button for closing the gripper was pressed on 
the on screen keyboard the gripper in gazebo closed in an instant. 
 

 
Figure 29: Graphical interface of the Gazebo simulation tool for the mobile platform 

 

 
Figure 30: Graphical interface of the Gazebo simulation tool for the katana arm 
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4.2 Testing the robot-model with the Pioneer-p3at 
Every function of the OSKA on-screen keyboard was tested and the robot and katana moved 
as desired. As the robots function were tested on the real platform, the katana functions were 
only tested in simulation because of technical difficulties with the katana arm. The computer 
running the GUI is connected to the robot via WLAN. The results showed that every function 
for moving the robot base works as desired. The only problem occurred when sending a 
katana movement task to the robot. The execution was delayed for a few seconds. Not only 
the katana movement was delayed, also the video feedback was delayed for about one 
second. 
 

5 Discussion 
As mentioned in section 4 (results), the robot moved according to the input given by the user. 
Also the automatic navigation worked as desired. The robot reached the desired destination 
without problems but when an obstacle is put in the path, it is avoided very scarce. The 
problem therefore could be that the parameters for obstacle avoidance and path planning are 
not defined that well. But a reconfiguration of these parameters should eliminate this 
problem. As also mentioned a big delay between pressing a katana movement button and 
the execution of this command is occurring. The problem therefore could be an insufficient 
ROS program where a mistake in the program code was overseen. Another big problem is 
the lag of the video feedback. But this problem cannot be solved as this lag occurs due to the 
analog digital and digital analog conversion. The lag could only be minimized or erased by 
sending the video data analogously. 
 

6 Conclusion 
This thesis made the first step for building a bridge from AsTeRICS to ROS by creating a 
robot user interface for people with severe motor disabilities. The model was extended step 
by step and so an easy to use graphical user interface was created. The complete robot 
platform can now be navigated easily by a person with reduced motor capabilities. 
 

7 Further Challenges 
As all functions are working separately without problems, the next step would be to observe 
and optimize the program and every parameter to get better performance of the different 
functions and when everything is run at the same time. Another challenge will be to find a 
better solution for the visual feedback. Also the control of the katana arm could be optimized 
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as the current solution is not that ideal for grabbing objects. After solving all these 
challenges, the robot model should work without problems. 
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List of abbreviations 
 

AAL Ambient Assisted Living 

ACS AsTeRICS Configuration Suite 

ARE AsTeRICS Runtime Environment 

GUI Graphical User Interface 

HMI Human Machine Interface 

IP Internet Protocol 

OSKA On Screen Keyboard Application 

ROS  Robot Operating System 

SLAM Simultaneous Localization and Mapping 

TCP Transmission Control Protocol 

WLAN Wireless Local Area Network 

WWW World Wide Web 
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