

BACHELOR THESIS 2
Biomedical Engineering – Medical and Hospital Engineering

Creation of a robot-user interface for persons
with reduced motor capabilities

Executed by: Simon Schmid
Personal Identifier: 1010227051

Advised by: Dipl.-Ing. Christoph Veigl

Vienna, May 13, 2013

Declaration
„I confirm that this paper is entirely my own work. All sources and quotations have been fully
acknowledged in the appropriate places with adequate footnotes and citations. Quotations
have been properly acknowledged and marked with appropriate punctuation. The works
consulted are listed in the bibliography. This paper has not been submitted to another
examination panel in the same or a similar form, and has not been published. I declare that
the present paper is identical to the version uploaded.”

Place, Date Signature

 3

Kurzfassung
Im Laufe dieser Bachelorarbeit wird ein Roboter-Modell für Menschen mit Behinderung
entwickelt um eine größtmöglich Selbstständigkeit zu gewährleisten. Dabei können
verschiedene Sensoren wie Gesichts- oder Augen-Scanner, einer Gehirn- Computer
Schnittstelle (BNCI), Joysticks, uvm. zur Steuerung verwendet werden. Durch die
Verschmelzung dieser Sensoren mit dem AsTeRICS System (Assistive Technology Rapid
Integration and Construction Set) können verschiedene Geräte wie Computer oder „on-
screen keyboards“ einfach über eine einzige Plattform gesteuert werden. Durch Verwendung
dieser Sensoren und dem AsTeRICS System soll die Steuerung eines Roboters und des
darauf montierten Roboterarms ermöglicht werden. Es wird ein Roboter des Typs
PioneerP3-at verwendet. Der Roboterarm wurde von der Firma Neuronics hergestellt und ist
ein sogenannter „Katana Arm“. In dieser Bachelorarbeit werden alle nötigen Funktionen, die
für die Steuerung notwendig sind, eingefügt: der Roboter wird mit Hilfe eines „on-screen
keyboards“ vorwärts, rückwärts, links, rechts fahren, sowie verschiedene Objekte greifen
können. Des Weiteren wird eine automatisierte Navigation implementiert, mit welcher der
Roboter bis zu fünf verschiedene Positionen selbstständig anfahren kann. Das für die
Steuerung verwendete „on-screen keyboard“ wird auf einem Rechner mit dem
Betriebssystem Windows betrieben. Der Roboter empfängt den Befehl über das Netzwerk
und bewegt sich in die gewünschte Richtung. Das Roboter Modell wurde mit einem
Simulationsprogramm sowie mit dem Roboter selbst getestet und es zeigte sich, dass sich
der Roboter wie vom Benutzer gewünscht bewegt.

Schlagwörter: PioneerP3-at, On Screen Keyboard, AsTeRICS, ROS, OSKA,
Handicapped Person

 4

Abstract
In the course of this Bachelor thesis, a robot interface for handicapped people with the use of
different sensor techniques like brain computer interfaces (BNCI), face- or eye-tracking,
momentary switches, mice or joysticks, puff and sip sensors, and many more will be created.
Through merging these sensors within the AsTeRICS system (Assistive Technology Rapid
Integration and Construction Set), various devices such as personal computers or on-screen
keyboards can be easily controlled via a single platform. With the use of the AsTeRICS
framework and the mentioned devices, the manipulation and navigation of a four-wheeled
robot platform called ‘PioneerP3-at’ shall be established. In this bachelor thesis, the basic
movements of the robot and a mounted katana arm, as also an intelligent collision query
have been implemented by utilizing and extending functions and modules of the Robot
Operating System (ROS) which is a widely used open source collection of algorithms for
robot control. For this purpose, a suitable grid with selectable cells for directions has been
designed for the OSKA on-screen keyboard application. This on-screen keyboard runs on
any computer with Windows operating system installed and communicates with the
AsTeRICS system via TCP/IP sockets. In AsTeRICS models, developed in this thesis, the
robot and katana arm can be controlled by various input devices. The mobile platform
receives the command via the network and moves as desired. The model was successfully
tested with a simulation tool and then executed on the real robot platform, a PioneerP3-at
system. The tests showed that the robot moves as desired.

Keywords: PioneerP3-at, On Screen Keyboard, AsTeRICS, ROS, OSKA, Handicapped
Person

 5

Table of content
1 Introduction .. 7

1.1 Potential Target Group ..10

2 Material and Methods ...11

2.1 AsTeRICS system overview ..11
2.1.1 AsTeRICS Runtime Environment (ARE) ...12
2.1.2 The AsTeRICS Configuration Suite (ACS) ..13

2.2 ROS overview ...13
2.2.1 ROS basics ...14
2.2.2 ROS services ..15
2.2.3 ROS actionlib package..15
2.2.4 ROS launch files ...16
2.2.5 Transformations and parent-child dependencies ...17

2.3 Sonar ..17
2.4 Point cloud ..18
2.5 Infrared distance measurement ...19
2.6 Kinematics ..20
2.6.1 Forward kinematics ...20
2.6.2 Inverse kinematics ..20

2.7 TCP/IP connection ..21
2.8 Robot 'PioneerP3-at' overview ..21
2.9 Use Cases ..22
2.9.1 Navigation via “one button” switches ...22
2.9.2 Navigation via Face tracking ...23

3 Implementation ...24

3.1 The final version of the AsTeRICS-Pioneer model ..24
3.1.1 The graphical user interface (GUI) ..26

3.2 The final version of the ROS program ...28
3.2.1 P2OS driver ..29
3.2.2 Katana package ..30
3.2.3 Point cloud to laser scan ...31
3.2.4 OpenNI camera...33
3.2.5 Static transform ...34
3.2.6 Map server and slam mapping ..34
3.2.6.1 Slam gmapping ...34
3.2.6.2 Map server ..35
3.2.7 Costmap ...35

 6

3.2.8 AMCL ..36
3.2.9 Move base ..37
3.2.10 Asterics Pioneer Robot ...37
3.2.11 Asterics Pioneer Network ..38

4 Results ..38

4.1 Testing the robot-model by simulation ...38
4.2 Testing the robot-model with the Pioneer-p3at ..40

5 Discussion ..40

6 Conclusion ..40

7 Further Challenges ...40

 7

1 Introduction
People with reduced motor capabilities often have problems using standard input methods
for computers and other information technologies. The AsTeRICS (“Assistive Technology
Rapid Integration and Construction Set” [1]) therefore provides software for “Assistive
Technologies” which provides handicapped persons an easy access to human-machine-
interfaces (HMI). There are various devices on the market, but they do not allow a full access
to or an easy modification of the device capabilities. The therapist or handicapped person
therefore cannot adapt the software by him or herself easily but has to call a specialist.
Through the use of an open source software it is possible that the therapist also can modify
or adapt the software via the Internet through the usage of a library where different models
are stored and uploaded. So the replacement or adaption of different functions can be easily
done. Also the ROS framework (Robot Operating System) which is used for programming
various robot platforms is an open source software which allows programmers to easily
extend the software and the robot itself with special functions or additional manipulators like
for example a robot arm.

Ambient Assisted Living (AAL) is nowadays omnipresent. Many people with disabilities are
already using a variety of devices which help them to cope with their everyday life easier or
to do various things that were previously impossible. Examples are electric wheelchairs,
automatic door openers and “accessibility supports” for the computer or even whole “smart
home managements”. On-screen keyboards allow selection of letters, icons or symbols with
single switches or sensors via so-called “scanning” methods, where rows and columns are
highlighted and the person uses a desired sensor to select the respective cell on the
graphical keyboard. The AsTeRICS system provides a configurable on-screen keyboard
application (“OSKA” [2]), where fully graphical keyboard grids can be designed with a
dedicated editor. A cell selection by the user can trigger events in the AsTeRICS Runtime
Environment (ARE), where they can be linked with desired actions. By the use of a “face
tracking-“ or “eye tracking-system” via “point and click”- operations, the cursor can be
controlled through head- or eye movements and cells of an on-screen keyboard can be
efficiently selected [3]. As on-screen keyboards are widely used, there are a lot of researches
on different scanning processes to find out which is the best way to select a single button.
This is important when handicapped person only can use a binary input device (like a puff
and sip sensor). An additional and novel type of support is the use of robots, which are
equipped with a manipulator arm and can recognize different objects, grab and carry them.
These robots are designed especially to help elderly and/or people with reduced motor
capabilities. One example is the recent introduction of a household robot, developed by the
company Toyota [4]. Also the “Technische Universität Wien” (TU Wien) is developing a robot

 8

arm which can identify and grab a specific object [5]. Therefore the idea came up to merge
the AsTeRICS software with ROS to develop a support robot. With the use of an adaptable
input interface for people with special needs via AsTeRICS and OSKA and the use of a robot
that can easily be extended, several assistive functions can be established. The system
software for the input devices is programmed via the AsTeRICS software and the robot
control is implemented via the Robot Operating System. For the movement of the robot, the
AsTeRICS software calls up different functions of a robot plugin, as soon as a direction-
button on the on-screen keyboard is pressed. This plugin then sends the command to move
in the desired direction to the robot via the wireless network (TCP/IP). The AsTeRICS plugins
are programmed in the program language JAVA. ROS is based on the programming
languages C++ and Python.

Summarized, the goal of this thesis is to develop a robot-user interface including an on-
screen keyboard and a suitable scanning method for the buttons. Also a robot-model will be
created in the ROS framework, which can execute a command received from the network.

In the course of this Bachelor thesis, the mobile platform will be able to move around by
following commands:

• Move forward
• Move backward
• Turn right
• Turn left
• Stop
• Turn around
• Turn 90° left
• Turn 90° right
• Move forward in a left curve
• Move backward in a left curve
• Move forward in a right curve
• Move forward in a right curve

Additionally to the manual navigation, an automatic navigation function is added. That means
the robot will be able to move to four different locations by its own as also the current position
can be saved and recalled at any time.

 9

The user will also be able to use a katana arm to interact with the environment. Therefore
following commands for the katana movements were implemented:

• Move forward
• Move backward
• Move left
• Move right
• Move up
• Move down
• Grab
• Release
• Save the current position
• Move to the saved position
• Move to the initial position
• Raise the movement width
• Lower the movement width

As there are three different movement cases, there will be three different on screen
keyboards available. The user can switch between those anytime in runtime.

In the following chapter (2.1 AsTeRICS system overview) the AsTeRICS framework is
described and the possibilities for navigating the robot are outlined. Subsequently in chapter
2.2 the Robot Operating System ROS and for this thesis necessary ROS functions are
described. Chapter 2.4 describes what a point cloud is. Chapter 2.5 describes how an
infrared distance measurement works and chapter 2.6 describes the term kinematics. In
chapter 2.7 a TCP/IP connection is described and in chapter 2.8, the utilized robot platform
and its modules and functions are presented. Chapter 2.9 describes two use cases. In
chapter 3, the whole implementation process and all implemented functions are described.
Chapter 4 presents the results. Chapter 5 and 6 concludes with a discussed and some future
prospects are mentioned in chapter 7.

It has to be mentioned that all terms by whatever means, either male or female, that they
have to be interpreted gender-free and that both sexes are meant, although it is not as such
mentioned.

 10

1.1 Potential Target Group
As the number of people with reduced motor capabilities has not reduced in the last years
the assistive technologies market and its products have developed very fast. More than three
million people worldwide are affected by paraplegia. Of these three million people around
52% have hemiplegia and around 46% have tetraplegia [6]. People with extremely reduced
motor capabilities can often only use single buttons like momentary switches or puff- and sip-
sensors and therefore depend on assistive devices where the selection of the functions is
adapted to the physical condition of the user. With the AsTeRICS system it is possible to use
an input device designed specifically for one particular user, and with the implementation of
ROS it is possible to link different robot modules with AsTeRICS. So this thesis provides a
robot-user interface for persons with such physical conditions in particular, and in general for
all people with motor impairments. So it addresses a wide ranged group. But not only
handicapped persons can benefit from this idea, also elderly people who have reduced fine
motor skills could use a service robot system for simple tasks like fetching things or carrying
objects with the use of a robot arm.

 11

2 Material and Methods
2.1 AsTeRICS system overview
AsTeRICS consists of different components: the hardware modules and the software
framework. A great variety of the hardware modules are available. For this thesis, only
standard mouse input and a webcam for face detection are used. As there are a lot of
hardware modules, the system can easily be personalized to special needs of a person. The
actually useable sensors for navigating the robot are described in Chapter 2.4. The full list of
available Sensors and Actuators can be looked up in the User Manual which can be found
the download section of the official AsTeRICS website [7]. Figure 1 shows the concept of the
AsTeRICS system.

Figure 1: Concept of the AsTeRICS system (Source [1], S. 6)

The hardware components include all sensors- and actuator modules, the Communication
Interface Modules (CIMs) and a computing platform like a laptop, tablet, etc. The sensors
and actuators are used to establish an interaction between the user and his environment.
The CIM then provides an interface and connects the sensors and actuators to the
computing platform where the ARE (AsTeRICS Runtime Environment) runs. As computing
platform any device with Windows operating system can be used. The ARE provides all the
functions which are included in the currently loaded model or application. The application or

 12

models have functions for signal processing of the actuators and sensors. These applications
are programmed with the AsTeRICS Configuration Suite and can be loaded in the ARE
through a TCP/IP connection. Thus, models can be adapted and sent to the user's ARE via
an internet connection.

The following two chapters describe the AsTeRICS Configuration Suite and the AsTeRICS
Runtime Environment for further understanding of this Bachelor thesis.

2.1.1 AsTeRICS Runtime Environment (ARE)
The ARE hosts applications which contain the plugins. These plugins provide all the
functionalities to the application. AsTeRICS applications are also called models or
configurations. In the ARE, the user can start, pause, stop or deploy a model. The ARE can
be run on a computer with the operating system Windows or on the AsTeRICS personal
platform. The AsTeRICS personal platform is an embedded computing platform where input
devices can be connected and models can be run. The models are configured and designed
with the AsTeRICS Configuration Suite which is described in the next chapter. Figure 2
shows how the ARE graphical user interface can look like. The “Main Panel” can contain
desired GUI-elements for graphical feedback or manipulation of model parameters which can
be arranged in the ACS GUI designer window. On the “Control Panel” there are four buttons
for loading, starting, pause or stop a model. The “Main Menu” provides further options and
models can also be loaded via the “Main Menu”.

Figure 2: Graphical User Interface of the ARE (Source [1], S. 14)

 13

2.1.2 The AsTeRICS Configuration Suite (ACS)
With the AsTeRICS Configuration Suite, models can be developed and edited. They also can
be uploaded or downloaded from/to the AsTeRICS Runtime Environment. It is also possible
to start, pause and stop a model through the ACS and it does not have to reside on the same
system as the ARE. The ACS offers all the sensor-, processor- and actuator plugins which
can be used. They easily can be placed and connected via drag and drop.

Figure 3 shows how the ACS looks like. The plugins can be placed and connected in the
deployment area (2), which actually constitutes the runnable AsTeRICS model. This model
can then be uploaded and executed on the ARE. Using the main menu, the user can save,
open or create a model. In the main menu toolbar (1) the user can interact with the ARE or
select the components and place them in the deployment area. The ACS includes also a
plugin creation wizard which allows the creation of a JAVA skeleton for a new plugin by
specifying the plugin’s input-, output- and event-ports.

Figure 3: Graphical User Interface of the AsTeRICS Configuration Suite (Source [1], S. 16)

In the figure above, the menu area (1), the deployment area (2), the GUI area (3) and the
properties (4) are shown. The main menu appears when clicking the AsTeRICS button (seen
on the right).

2.2 ROS overview
The Robot Operating System is an open source framework for robot software development.
It was developed by the Stanford Artificial Intelligence Laboratory. Nowadays it is wide
spread and commonly used in commercial and educational projects. It is designed in a way

 14

that it is easy to access and exchange newly programmed packages. A Package (also called
“stack”) contains all the executables and processes which the robot will use.

According to the developers of the ROS framework the philosophical goals can be
summarized as:

• Peer-to-peer
• Tools-based
• Multi-lingual
• Thin
• Free and Open-Source [8]

ROS has many components, tasks and services which provide hardware abstraction, device
control, re-use of functionalities, message exchange between programs or program parts,
package management and exchange of libraries for usage on multiple computers. Also a big
variety of different robot types are compatible with ROS. For the full list of usable Robots,
visit www.ros.org/wiki/Robots. In this thesis, the “Pioneer P3-at” robot platform is used
(described in chapter 2.8). In addition, a full list of the compatible sensors exists at
www.ros.org/wiki/Sensors.

In the following section, the basics and some functions of the ROS framework are described
in detail for further understanding of this Bachelor thesis.

2.2.1 ROS basics
The Robot Operating System bases on a topic system where various messages can be
subscribed to. These messages could contain for example a command for moving the robot
to the right. The topics and messages are defined in a node. Such nodes can communicate
with each other through sending messages to a specific topic. This system is described in
detail with the help of the following picture:

Figure 4: Example of a ROS program with different nodes and topics (Source [9])

http://www.ros.org/wiki/Robots�
http://www.ros.org/wiki/Sensors�

 15

In this example a little turtle can be moved on the screen using the arrow keys of the
keyboard. The node /turtlesim contains the topic /turtle1/command_velocity which is
responsible for moving the robot in the desired direction. The node /teleop_turtle publishes
a message to this topic. The message contains the values for the linear and angular
movement. The node /turtlesim also defines the graphical interface seen on the screen. All
two nodes are subscribing to the /rosout node which can be referred to as the endpoint or
output of the program.

The most important part of ROS is the Master. Its task is to act as a nameservice and to
store topic- and service- registration information for the nodes. Without the master, nodes
would not be able to exchange information or even find each other. Nodes communicate with
the Master to get information about other nodes. This enables the nodes to create
connections among them. That means nodes do communicate directly, the Master only
provides lookup information.

2.2.2 ROS services
For some functions, a request / reply interaction is needed. But the standard ROS publish /
subscribe model is not really suitable for such interactions. Therefore ROS uses services
which are defined by a pair of message structure where one is for the request and one for
the reply. A node can use the service by sending the request message to the node where the
service is defined and then waits for the reply.

2.2.3 ROS actionlib package
As described in chapter 2.2.2, with ROS services it is possible to send a request to a node to
perform a task and then receive a reply to the request. But if the service request takes too
long, the user may want to cancel the request during execution or get a feedback about the
request’s progress. Therefore the actionlib package provides a server-client model for such
preemptable tasks. The so called “ActionServer” and “ActionClient” communicate via a “ROS
Action Protocol”. This protocol is built on top of ROS messages. On the Client side the user
can request a goal which then gets executed on the server side. The following figure shows
the scheme of the “ActionServer” and “ActionClient”.

 16

Figure 5: ActionServer and ActionClient communication scheme (Source [12])

The client and server communicate via “Goal”, “Feedback” and “Result” messages which are
described below.

Goal
The “ActionClient” can send a goal message to the “ActionServer” to accomplish a task. For
example if the user wants to move a robot, the goal message would contain information
about where the robot should move to.

Feedback
The feedback message is send periodically from the “ActionServer” to the “ActionClient” and
tells the client about the progress of the goal. For example in the case of moving the robot,
the feedback message would contain information about the robots current position.

Result
The “ActionServer” sends a result to the “ActionClient”. The result contains information about
the completion of the goal. The result can either be that the goal was achieved or not. The
result message is sent only once to the “ActionClient”. In the example of moving the robot,
the result would be that the desired position was reached.

2.2.4 ROS launch files
For launching multiple ROS nodes locally or remotely and for setting various parameters,
ROS offers the launch files. In these launch file, every node that should get started and every
parameter which should get set is written down. Also launch files for other nodes can be
invoked. The commands in the launch file are invoked consecutively. The following figure
shows an example of a launch file. In the first line, the launch file for the node “p2os_driver”
gets executed. In the second part, the nodes for converting a point cloud into a laser scan

 17

are started and in the third section the nodes for the front and back camera drivers are
stated.

Figure 6: Example of a launch file for converting a point cloud into a laser scan

2.2.5 Transformations and parent-child dependencies
With the help of transformations the user can keep track of multiple coordinate frames over
time. The relationships between every coordinate frame bases on a tree structure which is
buffered in time. Any robotic system normally has a lot of 3D coordinate frames which
change over time. When relationships are defined between every part of the robotic system
the user can recall every frame’s position in the world at any time. As transformations base
on a tree structure, one frame can only have a single “parent” but one “parent” can have
multiple “children”.

Examples for such dependencies and transformations can be seen in chapter 3.2.2 and
chapter 3.2.3.

2.3 Sonar
Active sonar is used to measure the distance to an object. Therefore it uses a sound
transmitter and a receiver. There are three operation modes:

 18

• Monostatic operation mode – the transmitter and receiver are localized in the same
place

• Bistatic operation mode – the transmitter and receiver are separated
• Multistatic operation mode – more than one transmitters or receivers are used

which are spatially separated

A pulse of sound (called “ping”) is created through the transmitter. The receiver then listens
for reflections of the radiated pulse. For distance measurements, the time from transmission
of the sound wave to reception is measured. By knowing the speed of sound, the measured
time can be converted into a range. The pulse of sound is normally generated electronically.

In figure 7 is shown how a monostatic sonar system works. The red waves represent the
radiated pulse of sound which are then reflected by an object and sent back to the receiver
(green waves). By knowing the duration between sending and receiving the distance to the
object can be calculated.

Figure 7: Principle of how sonar works (Source [13])

2.4 Point cloud
A set of vertices in a 3D coordinate system is called point cloud. These vertices typically
represent an external surface of an object and are defined by X, Y and Z coordinates. That
means every single point of the cloud represents a specific measured point on the recorded
object’s surface. When color information is added to the point cloud, it becomes 4D.

For the creation of a point cloud normally 3D scanners are used which measure a set of
points representing the point cloud. In this bachelor thesis an infrared camera was used. The

 19

infrared camera does nothing else as measuring the distance of a set of points. With the
collected data, a point cloud can be created which is done by software.

The following picture shows a typical point cloud of different objects generated from the
camera data. As the point cloud also includes the color information of the objects, it is four
dimensional.

Figure 8: Example of a recorded point cloud (Source [14])

2.5 Infrared distance measurement
In infrared distance measurement devices a light beam is sent out from an infrared LED. This
light beam gets reflected by an object of which the distance should be measured. The
reflected light beam comes back and hits a position sensor within the device. Depending on
where the light beam hits the position sensor a different voltage gets emitted. This voltage
now can be converted into a distance. The following figure shows two light beams reflected
from different distances (P1 and P2) resulting in two different voltages U1 and U2.

Figure 9: Principle of infrared distance measurement (Source [15])

 20

2.6 Kinematics
In classical mechanics the motion of points, objects and group of objects is described
through kinematics. The cause of motion is not included in kinematics. It is also called the
geometry of motion. It studies the trajectories and movements of geometric objects, lines and
points and their velocity and acceleration. In robotics it is used to describe the motion of
joined parts such as robotic arms or engines.

For the use of kinematics with robotic arms there are two approaches for computing the
necessary joint movements to reach a desired endeffector position, forward kinematics and
inverse kinematics. These two approaches are described in detail in the following two sub
chapters.

2.6.1 Forward kinematics
In forward kinematics the endeffector position gets computed from the specific joint
parameters. The endeffector position is not known at the beginning, only the angle of each
joint is specified. To move the endeffector to a specific position each angle gets altered till
the desired position is reached beginning with the hierarchic uppermost joint. With the help
of the following picture forward kinematics can be easily described. To move the endeffector
to a desired position the first joint (joint1), which is also the hierarchic uppermost point and
therefore the start joint, gets moved. Then the remaining joints are also moved till the end
position is reached.

Figure 10: Forward kinematic scheme (Source [16])

2.6.2 Inverse kinematics
Inverse kinematics can be referred to as the reverse process of forward kinematics. At the
beginning only the endeffector position is known. When moving this endeffector to a defined
point, all joint parameters get calculated with the help of a mathematical expression. For

 21

example when the endeffector (in the picture bellow called ikHandle) should be moved to a
specific position, all joints (joint 1 to joint 4) move according to the calculated angle.

Figure 11: Inverse kinematic scheme (Source [16])

2.7 TCP/IP connection
TCP stands for “Transmission Control Protocol” and IP for “Internet Protocol”. It acts as
protocol for communication between a computer and the internet. It defines how the
computer should be connected to the internet and how data should be transmitted. TCP is
responsible for the communication between the software and IP is responsible for
communication between computers. Therefore TCP breaks the data to be sent into packages
and passes them on to the IP which is responsible for sending them to the correct
destination. TCP can also assemble incoming IP packages. TCP/IP connection is the most
common used communication between software and software or computer and computer.

2.8 Robot 'PioneerP3-at' overview
The PioneerP3-at is a four wheel drive robotic platform. It has an aluminum body, four-wheel
skid-steer, reversible DC motors, motor-control and drive electronics, high-resolution motion
encoders and battery power. These components are all managed by mobile-robot server
software which resides on the onboard computer. Because of the onboard computer it is
possible to run the client software without any additional PC. The PioneerP3-at can be
equipped with additional accessories like manipulator arms and grippers, bumper switches
speech and audio systems, laser mapping systems and many more. So with this robot a high
customization factor is given and later new features can be easily adapted. As only the robot
main functions are implemented in this thesis the equipped sensors will not be used. For
more information about the PioneerP3-at visit the official website
(www.mobilerobots.com/researchrobots/p3at.aspx).

http://www.mobilerobots.com/researchrobots/p3at.aspx�

 22

The following figure (Figure 12) shows how the robot currently looks like. It is equipped with
the hardware components (1), a katana arm (2) for grabbing different objects, a front and
back bumper switch (3) as also a built in sonar device (4) for collision query and three
cameras. Two of these are an Asus Xtion Pro (5) with which a distance measurement is
possible and the other is a normal webcam from Logitech (6) for normal image recognition. In
the picture below the Logitech webcam is not included but the arrow points to the location is
should be mounted.

Figure 12: Appearance and current setup of the PioneerP3-at robot

2.9 Use Cases
2.9.1 Navigation via “one button” switches
As OSKA offers different scanning processes which can easily be defined in the ACS various
one button switches can be used. For example a puff and sip sensor can be used for the row
and cell selection. A use case therefore could be that the user can control the row selection
by blowing into the sensor and for cell selection the user has to blow for a certain amount of
time. In the case of one button switches any device which can send out a signal by activation
can be used.

1

6

2

4

5

3

3

4

5

 23

Figure 13: Use-case scenario using one button switches for navigation the robot

2.9.2 Navigation via Face tracking
The head movements are tracked via a normal webcam. The software converts the head
movements into a movement of the mouse cursor with which several options can be selected
on an on screen keyboard. Then a plugin converts the command in a command the robot
understands and sends it to the robot via a TCP/IP connection. The model which does the
previous described task is located on a personal computer with ARE running on it. The
following Figure shows a scheme of a possible use-case scenario.

Figure 14: Use-case scenario using a webcam for navigating the robot

 24

3 Implementation
3.1 The final version of the AsTeRICS-Pioneer model
At first, an empty JAVA-skeleton for the pioneer plugin was created with the help of the
AsTeRICS plugin creation wizard. Then the specific functions of the plugin were programmed
within the Eclipse IDE, which is a universal toolset for development and programming [10].
As AsTeRICS plugins are written in JAVA, Eclipse was configured for this framework. The
pioneer plugin code opens up a TCP/IP connection (as a client) to a specified host (the
server part is implemented in the ROS framework) and sends a command which is received
via a string input port of the plugin to the defined host (robot). For example if the button for
the forward movement is pressed, the program converts the specific command into a special
format (called “byte array”) which then is sent via the network to the IP-address specified via
the plugin properties. The IP-address can be edited with the ACS. The developer must
ensure that the IP-address of the robot is not changing and is identical with the target IP-
address of the AsTeRICS-Pioneer plugin. If the server side is not started yet, the client can
still be started because the plugin tries to connect every few seconds and establishes a
connection as soon as the server side comes up. When the connection is established the
plugin is ready for sending and also receiving messages.

In figure 15 the OSKA-, robot- and text display- plugin inserted in the ACS can be seen. Via
the output of the OSKA plugin the desired command is sent to the robot plugin as string. The
robot plugin forwards this command to the mobile platform. The plugin also checks every few
milliseconds if there is any data to receive and if needed forwards the received message to
the text display plugin. On the right site of the figure the editable properties of the robot
platform can be seen.

Figure 16 shows how the model looks like in runtime. The upper window shows the text
display where the received message gets displayed. The GUI for manual movement of the
robot can be seen in the bottom left window. In the bottom right corner of the picture the
ARE- console can be seen.

 25

Figure 15: Model setup of controlling the pioneer with the OSKA plugin

Figure 16: Runtime example of the robot model

 26

3.1.1 The graphical user interface (GUI)
The interaction of an OSKA on-screen keyboard as the primary graphical user interface to
the end user depicts the following advantages:

• Easier ACS model due to less components
• OSKA features built-in automatic scanning methods (row/column, single key, …)
• User friendly design of the GUI with icons is possible in the OSKA grid editor

Therefore the GUI is based on an OSKA keyboard. In the scanning process, the selection of
the button will be switched every second from the left to the right. At first the upper left button
is selected, then after one second the middle button of the first row is selected and after
another second passes the right button will be selected and so on. The user then has the
possibility to press a button by simply pressing an external momentary switch, or by pressing
the “Enter” key on a special keyboard. For changing the row, the user only has to press the
button for a certain amount of time. This type of scanning process is only one method and
can easily be changed in the ACS by connecting different signals to the cell selection input
ports of the OSKA plugin.

The following figure shows how the GUI for the manual navigation, automatic navigation and
for katana navigation looks like. With the on-screen keyboard for manual navigation (figure
17) the user can drive the robot around directly by pressing the desired button. With the
keyboard for automatic navigation (figure 18), the robot moves to the desired position like the
fridge, shelter, desk or the battery station automatically. Therefore it plans a path and also
avoids suddenly appearing obstacles. The current position of the robot can also be saved
and recalled later if desired. With the on-screen keyboard for the katana arm (figure 19), the
user can control the robot arm simply by pressing a button. The main movements like moving
left, right, up, down, forward and backward are implemented. There is also a button for
moving the arm back to its initial pose or for saving the current position. The saved position
then can be recalled any time.

 27

Figure 17: Appearance of the OSKA keyboard for manual navigation

Figure 18: Appearance of the OSKA keyboard for automatic navigation

 28

Figure 19: Appearance of the OSKA keyboard for the katana arm

3.2 The final version of the ROS program
The whole ROS program can be started by executing the “main.launch” file in the package
“Asterics_Pioneer_Robot”. By executing this file, the following packages and drivers are
activated successively.

• P2OS driver
• Katana arm navigation
• Pointcloud2laser for front camera
• Pointcloud2laser for back camera
• Openni for front camera
• Openni for back camera
• Static transform
• Map server
• Costmap 2D
• AMCL

 29

• Move base
• Asterics Pioneer Robot
• Asterics Pioneer Network

The following chapters explain what each individual stack is doing and how they work.

3.2.1 P2OS driver
This node provides a driver for robots which use a pioneer P2OS/ARCOS interface like the
P3-AT Robot. The user can send velocity commands for left, right, front and back
movements to this node which then forwards the command to the robot. With the P2OS node
the motor state and sonar can also be controlled.

Figure 20: Example of how the P2OS driver works

In figure 20 a “cmd_vel” message gets published from the “Asterics_Pioneer_Robot” to the
“p2os_driver” node. This message contains information about the direction the robot should
move to. It then forwards the velocity command to the robot’s motor. The node also
publishes the topic “pose” (here renamed into “odom”) which contains information about the
robot’s current position and movements. The node evaluates the current position through
summarizing all movement events so far. But with this information only the robots
movements can be tracked, not the actual position on for example a known map. Therefore
other nodes like AMCL and map server are needed.

 30

The p2os driver is an open source package which is updated permanently and can be
downloaded from the ROS website [20]. Nothing of the original package was altered in this
bachelor thesis.

3.2.2 Katana package
For interaction and manipulation of objects there are various open source packages
available. As on the robot a Neuronics katana arm is mounted, the package
“katana_arm_navigation” and “katana_driver” stack were used. The “katana_driver” stack
provides the main driver for the katana arm. With the help of the “katana” node the user can
control and drive every single motor. The node “katana_arm_navigation” provides the
kinematics (inverse and forward) for the arm. This node bases on an actionlib, so the user
can send goal commands to this node. That means if a goal where the endeffector should
move to is sent to the “katana_arm_navitation” node via a service call, it calculates how each
motor has to move to reach the goal. The therefore necessary motor movements are then
sent to the “katana” node which triggers the katana arm to move in the desired position.

Figure 22 shows all transforms from the katana arm. The “katana_gripper_link” refers to the
endeffector of the arm. The previous links refer to each motor. Figure 21 shows how the
katana arm looks like and also the name of each joint can be seen.

Figure 21: Appearance of the katana arm

 31

Figure 22: Hierarchic tree of all links of the katana arm parts

3.2.3 Point cloud to laser scan
The “Pointcloud2laser” uses a generated 3D point cloud and converts it into a 2D laser scan.
As there are two cameras mounted on the robot (seen and described in chapter 2.8), also
two “Pointcloud2laser” nodes were created. One publishes the laser scan for the front and
the other for the back.

 32

For the laser scan the following parameters have to be set:

• Minimum height to sample in the point cloud in meters = -0.025
• Maximum height to sample in the point cloud in meters = -0.025
• Minimum scan angle = -π/2
• Maximum scan angle = π/2
• Scan rate in seconds = 1/30
• Minimum range in meters = 0.45
• Maximum range in meters = 10
• The frame id of the laser scan = “camera_depth_frame_front”

The node takes the ranges of every point from the point cloud in a user specified plain and
saves them in the laser scan message. The plain is defined by the parameters minimum
height and maximum height. The point of origin for this plane is defined by the static
transform between the base frame, camera frame and the laser scan frame (here the laser
scan frames are named “camera_depth_frame_front” and “camera_depth_frame_back”).
This parent-child relationship is pictured in figure 23. The frame “base_link” represents the
center of the robot. This center is now the so called parent of the frames “asus_front_link”
and “asus_back_link”. These two frames represent the point of origin from the two camera
devices. The frames “asus_front_rgb_frame” and “asus_back_rgb_frame” belong to the
RGB-vision of the cameras. The frames “asus_front_depth_frame” and
“asus_back_depth_frame” belong to the infrared-vision of the cameras. This chapter does
not elaborate on the frames “odom” and “map” because this is done in chapter 3.2.1 and
chapter 3.2.6.

Figure 23: Hierarchic tree of the camera and laser scan link

 33

For ROS it is necessary to define such dependencies, because they are needed for the
correct computation of every device’s origin of ordinates. In this chapter the parent-child
relationships and how the dependencies to each other are defined are not described any
further, because this is done in chapter 2.2.5. and chapter 3.2.5.

The following figure shows how the point cloud and the laser scan from both cameras look
like. In the bottom left corner the video feedback of the infrared camera can be seen. The
point cloud (red) was generated from this image. The computed laser scan (black) can also
be seen in the picture.

Figure 24: Example of a recorded point cloud (red) and the thereof created laser scan (black)

3.2.4 OpenNI camera
The OpenNI camera node uses the open source framework OpenNI [21] which acts as driver
for the used camera. As cameras, two Asus Xtion Pros were used (figure 25). They provide
an infrared and RGB image, as also the depth information of the recorded images. With the
help of the depth information a point cloud can be generated. The images and the point cloud
then can be used with ROS as they are published topics.

 34

Figure 25: Appearance of the used camera for distance measurement (Source [17])

The OpenNI camera node gets called up twice because of the two cameras pointing forward
and backward. The device id and their names are defined in the “main.launch” file when
calling up the OpenNI launch file. From the original package nothing was altered and can be
downloaded from the ROS website [22].

3.2.5 Static transform
As in chapter 2.2.5 is described that transforms are used to define parent-child relationships
between the different components, here a static transform is used to define the relationship
between the base frame, the two camera frames and the laser scan frames. The front
camera frame is located 20 centimeters and the back camera frame is located -20
centimeters on the x axis but rotated 180 degrees (corresponds to roughly 3.1415 radian). As
the point cloud of the camera is used to generate a laser scan, the frames of each laser scan
is located at the same place as the camera frames. In the transformation tutorial on the ROS
website it is explained in detail how to use a static transform in a launch [23]. The
transformation tree for the cameras can also be seen in figure 23.

3.2.6 Map server and slam mapping
The map server offers map data as a ROS service. With this node a map can be saved or
loaded. Before saving or loading a map, it has to be created with the help of the package
slam gmapping.

3.2.6.1 Slam gmapping
Slam gmapping uses pose (here it is named odom) and laser data collected by the robot to
create a 2D map like a floorplan. For the process of collecting the data, the user has to drive
the robot manually through the room and scan everything. To get a reliable and accurate
map the robot should not be moved around very fast but slow and smooth. The map created
and used for this bachelor thesis can be seen in figure 26.

 35

Figure 26: Appearance of the recorded saved and used map

3.2.6.2 Map server
After the map was created with the help of slam gmapping, it can be saved by a command
line order. With this order, two files are generated. One contains the map itself as occupancy
grid and the other the basic information like size and name of the map. When the map was
saved successfully, the slam gmapping node is no longer needed and can be closed. To load
a map, the map server node must be started, which is done in the “main.launch” file where
also the location and name of the map has to be defined.

3.2.7 Costmap
This package implements a 2D costmap that takes in sensor data from the robot and builds
an occupancy grid from the data. With the help of this occupancy grid, the robot now knows
where to move and how close it can move towards a wall. Also suddenly appearing
obstacles are registered and recorded. The user has to define some parameters like the
robot’s safety radius or update rate. In this thesis all needed parameters are loaded when
calling the move base node. For the full list of editable parameters used by this node visit the
ROS website [24].

The following picture shows a generated costamp2D where the red cells represent obstacles,
the blue sells represent obstacles inflated by the inscribed radius of the robot and the red
polygon represents the footprint of the robot. To avoid any collision, the footprint of the robot
should never intersect a red cell and the center of the robot should never touch a blue cell.

 36

Figure 27: Example of the appearance of a map including the costmap package (Source [18])

3.2.8 AMCL
The AMCL package provides a localization system for robots moving in 2D. It computes the
robot’s current position in the map with the help of the laser scan and odometry data and
creates a relationship between the base frame and the map frame. Without this package the
current position of the robot on the map would not be known. The figure below shows the
difference between localization using odometry and AMCL.

Figure 28: Example of the function of the AMCL package (Source [19])

 37

For this bachelor thesis the following parameters were modified:

• Minimum allowed number of particles = 500
• Maximum error between the true and estimated distribution = 0.05
• Transform tolerance = 0.9

For the full list of editable parameters used by this node visit the ROS website [25].

3.2.9 Move base
This package provides action commands for sending, pausing or canceling a goal which the
robot will attempt to reach. It uses the map, laser scan and odometry data to plan a path to
the goal and sends then the corresponding velocity commands to the robot. With the help of
costmap2D it also tries to avoid appearing obstacles and alters the calculated path in a way
that the mobile platform drives around this obstacle and does not hit it. For correct path
planning and obstacle avoidance a lot of parameters have to be adjusted accordingly. All
these parameters are defined in a few different files, which are loaded in the “main.launch”
file when calling the move base node. In these files also the parameters for the costmap2D
are defined. For the full list of editable parameters used by this node visit the ROS website
[26].

3.2.10 Asterics Pioneer Robot
This package is responsible for the movements of the robot itself and the katana arm. It gets
the commands from the “Asterics_Pioneer_Network” node and processes them. Before
starting this node the robot must stand on its initial position which is here defined as the
battery station. Now when starting the node, the robot’s position gets set correctly in the map
and the localization, obstacle avoidance through costmap2D and the path planning should
work correctly. After the position is set, the katana arm will move into its initial pose. When
these two processes are completed the node waits for incoming commands. If a command
arrives, the node checks if it is meant for the katana arm or the mobile platform and acts
accordingly.

For example, when the user presses the button for the forward movement of the robot, the
node “Asterics_Pioneer_Network” gets this command and forwards it to the
“Asterics_Pioneer_Robot” node. This node then checks if it is meant for the mobile platform
or for the katana arm. It jumps right in the mobile platform class and checks which command
should be performed. As it is a command for forward movement, the node sends an

 38

appropriate velocity command to the node “p2os_driver” which then drives the robot in the
desired direction. If a katana movement command is coming in, the node sends the
appropriate velocity command to the nodes responsible for the katana arm (explained in
detail in chapter 3.2.2).

If desirable, an additional obstacle avoidance function with the use of the built in sonar
device can be started. But therefore the user has to alter the program code a little bit so that
the additional collision query gets also started.

3.2.11 Asterics Pioneer Network
This package is responsible to establish a network connection to the computer where the
GUI is running. It acts as server and the other computer acts as client. When starting this
node, it waits until a client connects. It has to be ensured that the client uses the right port to
connect to, because the on the server side, the port on which the client should connect to, is
defined in the program code. When the client connects and no error occurred, the node is
ready to receive commands. This command is then published as ROS topic to the node
“Asterics_Pioneer_Robot” where it gets reprocessed. The “Asterics_Pioneer_Network” node
is also able to send such a message to the client where it gets displayed in a text field.
Therefore it checks every few milliseconds if there is something to send. For example if an
obstacle occurs in front of the robot, the node can send a situation related message to the
computer of the user where it gets displayed on the screen. The client side of the robot
model is described in detail in chapter 3.1.

4 Results
4.1 Testing the robot-model by simulation
For simulation the program gazebo was used. It is a simulation tool with which every function
of the robot can be tested, just like using a real robot. Figure 29 and figure 30 show the
graphical interface of the simulation tool. With Gazebo it is possible to generate and edit
complex simulation scenarios by simply dragging and dropping walls or objects. Such
elements also can be inserted by writing a command into the console or terminal. It is also
possible to record the movements for further analysis of the systems behavior

For executing the simulation, the ARE running the AsTeRICS-Pioneer model was started on
a computer running the operating system Windows 7. The Gazebo simulator and the ROS
program which receives the commands sent by the ARE were started on a laptop running the
operating system Ubuntu. These two computers were connected over the network using a

 39

WLAN-Router. When testing the whole program and every function, the robot and the katana
arm moved as desired. For example when the button for closing the gripper was pressed on
the on screen keyboard the gripper in gazebo closed in an instant.

Figure 29: Graphical interface of the Gazebo simulation tool for the mobile platform

Figure 30: Graphical interface of the Gazebo simulation tool for the katana arm

 40

4.2 Testing the robot-model with the Pioneer-p3at
Every function of the OSKA on-screen keyboard was tested and the robot and katana moved
as desired. As the robots function were tested on the real platform, the katana functions were
only tested in simulation because of technical difficulties with the katana arm. The computer
running the GUI is connected to the robot via WLAN. The results showed that every function
for moving the robot base works as desired. The only problem occurred when sending a
katana movement task to the robot. The execution was delayed for a few seconds. Not only
the katana movement was delayed, also the video feedback was delayed for about one
second.

5 Discussion
As mentioned in section 4 (results), the robot moved according to the input given by the user.
Also the automatic navigation worked as desired. The robot reached the desired destination
without problems but when an obstacle is put in the path, it is avoided very scarce. The
problem therefore could be that the parameters for obstacle avoidance and path planning are
not defined that well. But a reconfiguration of these parameters should eliminate this
problem. As also mentioned a big delay between pressing a katana movement button and
the execution of this command is occurring. The problem therefore could be an insufficient
ROS program where a mistake in the program code was overseen. Another big problem is
the lag of the video feedback. But this problem cannot be solved as this lag occurs due to the
analog digital and digital analog conversion. The lag could only be minimized or erased by
sending the video data analogously.

6 Conclusion
This thesis made the first step for building a bridge from AsTeRICS to ROS by creating a
robot user interface for people with severe motor disabilities. The model was extended step
by step and so an easy to use graphical user interface was created. The complete robot
platform can now be navigated easily by a person with reduced motor capabilities.

7 Further Challenges
As all functions are working separately without problems, the next step would be to observe
and optimize the program and every parameter to get better performance of the different
functions and when everything is run at the same time. Another challenge will be to find a
better solution for the visual feedback. Also the control of the katana arm could be optimized

 41

as the current solution is not that ideal for grabbing objects. After solving all these
challenges, the robot model should work without problems.

 42

List of Literature

[1] Kompetenznetzwerk KI-I, Project AsTeRICS, Online at Internet URL:

http://www.asterics.eu/fileadmin/user_upload/Documentation/UserManual.pdf (last
accessed 12.1.2013)

[2] Claro Interfaces, http://www.clarointerfaces.com/category/oska-for-pc-access.php
(last accessed 12.1.2013)

[3] http://www.cogain.org/home (last accessed 12.1.2013)
[4] Agence France- Presse, IndustryWeek, Online at Internet URL:

http://www.industryweek.com/robotics/toyota-unveils-robot-designed-perform-
household-chores (last accessed 4.12.2012)

[5] Der Standard, Online at Internet URL: http://derstandard.at/1345166255878/Im-
Umgang-mit-uns-muessen-Roboter-weich-werden (last accessed 4.12.2012)

[6] http://www.wingsforlife.com/de-at/querschnittslaehmung/ursachen-folgen/ (last
accessed 12.1.2013)

[7] Kompetenznetzwerk KI-I, Project AsTeRICS, http://www.asterics.eu/index.php?id=26
(last accessed 12.1.2013)

[8] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, Andrew Ng. - ROS: An open-source Robot Operating
System, Stanford University, Willow Garage, University of Southern California

[9] http://www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics (last accessed 4.12.2012)
[10] Eclipse Foundation, http://www.eclipse.org/ (last accessed 12.1.2013)
[11] http://www.kdevelop.org/ (last accessed 12.1.2013)
[12] www.ros.org/wiki/actionlib (last accessed 12.5.2013)
[13] http://mainland.cctt.org/istf2006/sonar.asp (last accessed 12.5.2013)
[14] http://www.willowgarage.com/blog/2011/02/28/nist-and-willow-garage-solutions-

perception-challenge (last accessed 12.5.2013)
[15] http://home.roboticlab.eu/de/examples/sensor/ir_distance (last accessed 12.5.2013)
[16] http://www.dma.ufg.ac.at/app/link/Grundlagen%3A3D-Grafik/module/14174 (last

accessed 12.5.2013)
[17] http://www.asus.de/Multimedia/Motion_Sensor/Xtion_PRO/ (last accessed 12.5.2013)
[18] http://www.ros.org/wiki/costmap_2d?action=AttachFile&do=get&target=costmap_rviz.png (last

accessed 12.5.2013)
[19] http://www.ros.org/wiki/amcl (last accessed 12.5.2013)
[20] http://www.ros.org/wiki/p2os_driver (last accessed 12.5.2013)
[21] http://www.openni.org/ (last accessed 12.5.2013)
[22] http://www.ros.org/wiki/openni_kinect (last accessed 12.5.2013)

http://www.asterics.eu/fileadmin/user_upload/Documentation/UserManual.pdf�
http://www.clarointerfaces.com/category/oska-for-pc-access.php�
http://www.cogain.org/home�
http://derstandard.at/1345166255878/Im-Umgang-mit-uns-muessen-Roboter-weich-�
http://derstandard.at/1345166255878/Im-Umgang-mit-uns-muessen-Roboter-weich-�
http://www.wingsforlife.com/de-at/querschnittslaehmung/ursachen-folgen/�
http://www.asterics.eu/index.php?id=26�
http://www.ros.org/wiki/ROS/Tutorials/UnderstandingTopics�
http://www.eclipse.org/�
http://www.kdevelop.org/�
http://www.ros.org/wiki/actionlib�
http://mainland.cctt.org/istf2006/sonar.asp�
http://www.willowgarage.com/blog/2011/02/28/nist-and-willow-garage-solutions-perception-challenge�
http://www.willowgarage.com/blog/2011/02/28/nist-and-willow-garage-solutions-perception-challenge�
http://home.roboticlab.eu/de/examples/sensor/ir_distance�
http://www.dma.ufg.ac.at/app/link/Grundlagen%3A3D-Grafik/module/14174�
http://www.asus.de/Multimedia/Motion_Sensor/Xtion_PRO/�
http://www.ros.org/wiki/costmap_2d?action=AttachFile&do=get&target=costmap_rviz.png�
http://www.ros.org/wiki/amcl�
http://www.ros.org/wiki/p2os_driver�
http://www.openni.org/�
http://www.ros.org/wiki/openni_kinect�

 43

[23] http://www.ros.org/wiki/tf#static_transform_publisher (last accessed 12.5.2013)
[24] http://www.ros.org/wiki/costmap_2d (last accessed 12.5.2013)
[25] http://www.ros.org/wiki/amcl (last accessed 12.5.2013)
[26] http://www.ros.org/wiki/move_base (last accessed 12.5.2013)

http://www.ros.org/wiki/tf#static_transform_publisher�
http://www.ros.org/wiki/costmap_2d�
http://www.ros.org/wiki/amcl�
http://www.ros.org/wiki/move_base�

 44

Table of figures

Figure 1: Concept of the AsTeRICS system (Source [1], S. 6) ... 11
Figure 2: Graphical User Interface of the ARE (Source [1], S. 14) ... 12
Figure 3: Graphical User Interface of the AsTeRICS Configuration Suite (Source [1], S. 16) 13
Figure 4: Example of a ROS program with different nodes and topics (Source [9]) 14
Figure 5: ActionServer and ActionClient communication scheme (Source [12]) 16
Figure 6: Example of a launch file for converting a point cloud into a laser scan 17
Figure 7: Principle of how sonar works (Source [13]) .. 18
Figure 8: Example of a recorded point cloud (Source [14]) .. 19
Figure 9: Principle of infrared distance measurement (Source [15]) .. 19
Figure 10: Forward kinematic scheme (Source [16]) .. 20
Figure 11: Inverse kinematic scheme (Source [16]) .. 21
Figure 12: Appearance and current setup of the PioneerP3-at robot .. 22
Figure 13: Use-case scenario using one button switches for navigation the robot 23
Figure 14: Use-case scenario using a webcam for navigating the robot .. 23
Figure 15: Model setup of controlling the pioneer with the OSKA plugin ... 25
Figure 16: Runtime example of the robot model.. 25
Figure 20: Example of how the P2OS driver works ... 29
Figure 21: Appearance of the katana arm .. 30
Figure 22: Hierarchic tree of all links of the katana arm parts ... 31
Figure 23: Hierarchic tree of the camera and laser scan link ... 32
Figure 24: Example of a recorded point cloud (red) and the thereof created laser scan (black) 33
Figure 25: Appearance of the used camera for distance measurement (Source [17]) 34
Figure 26: Appearance of the recorded saved and used map ... 35
Figure 27: Example of the appearance of a map including the costmap package (Source [18]) 36
Figure 28: Example of the function of the AMCL package (Source [19])... 36
Figure 29: Graphical interface of the Gazebo simulation tool for the mobile platform 39
Figure 30: Graphical interface of the Gazebo simulation tool for the katana arm 39

 45

List of abbreviations

AAL Ambient Assisted Living

ACS AsTeRICS Configuration Suite

ARE AsTeRICS Runtime Environment

GUI Graphical User Interface

HMI Human Machine Interface

IP Internet Protocol

OSKA On Screen Keyboard Application

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

TCP Transmission Control Protocol

WLAN Wireless Local Area Network

WWW World Wide Web

.

http://www.dict.cc/englisch-deutsch/list.html�
http://www.dict.cc/englisch-deutsch/of.html�
http://www.dict.cc/englisch-deutsch/abbreviations.html�

	Table of content
	1 Introduction
	1.1 Potential Target Group

	2 Material and Methods
	2.1 AsTeRICS system overview
	2.1.1 AsTeRICS Runtime Environment (ARE)
	2.1.2 The AsTeRICS Configuration Suite (ACS)

	2.2 ROS overview
	2.2.1 ROS basics
	2.2.2 ROS services
	2.2.3 ROS actionlib package
	2.2.4 ROS launch files
	2.2.5 Transformations and parent-child dependencies

	2.3 Sonar
	2.4 Point cloud
	2.5 Infrared distance measurement
	2.6 Kinematics
	2.6.1 Forward kinematics
	2.6.2 Inverse kinematics

	2.7 TCP/IP connection
	2.8 Robot 'PioneerP3-at' overview
	2.9 Use Cases
	2.9.1 Navigation via “one button” switches
	2.9.2 Navigation via Face tracking

	3 Implementation
	3.1 The final version of the AsTeRICS-Pioneer model
	3.1.1 The graphical user interface (GUI)

	3.2 The final version of the ROS program
	3.2.1 P2OS driver
	3.2.2 Katana package
	3.2.3 Point cloud to laser scan
	3.2.4 OpenNI camera
	3.2.5 Static transform
	3.2.6 Map server and slam mapping
	3.2.6.1 Slam gmapping
	3.2.6.2 Map server
	3.2.7 Costmap
	3.2.8 AMCL
	3.2.9 Move base
	3.2.10 Asterics Pioneer Robot
	3.2.11 Asterics Pioneer Network

	4 Results
	4.1 Testing the robot-model by simulation
	4.2 Testing the robot-model with the Pioneer-p3at

	5 Discussion
	6 Conclusion
	7 Further Challenges

